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Abstract  
 
The Embedded High Performance Scalable Computing Systems (EHPSCS) program is a 
contractual cooperative agreement between Sanders, a Lockheed Martin Company and the 
Defense Advanced Research Projects Agency (DARPA) that ran for three years, from April 1995 
to April 1998.   The focus of the EHPSCS research program was on the development of a highly 
integrated, scalable multiprocessing architecture based on leading COTS technologies for 
environmentally constrained applications. The program developed an 11 GFLOPS embedded 
processor hardware/software testbed and software development tools to facilitate technology 
transfer, an advanced packaging insertion approach, and a second generation microarchitecture – 
the ReConfigurable Transport Engine.  
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1 The Need  

The Defense Advanced Research Projects Agency (DARPA) has a defined need to leverage and 
enhance the commercial scalable High Performance Computing (HPC) technology base for a 
wide range of embedded military and defense applications.  Applications such as Automatic 
Target Recognition and Synthetic Aperture Radar require tera-ops per second of processing 
power and gigabytes per second of I/O throughputs.  In addition, advanced embedded system 
developments require a cost-effective environment which provides performance models for 
critical system analysis and trade decisions, architecture and tools framework to accelerate 
application development, and embedded resource building blocks to accelerate system 
implementation.  The EHPSCS program has addressed these needs. 

2 Objective  

The main objective of the EHPSCS program was to develop innovative embedded scalable 
multicomputer solutions based on leading COTS technologies that will support a diverse set of 
military applications and requirements.  These requirements include a wide range of processing 
power, memory capacity, and resource types that necessitate scalability to address these ranges.  
Operating environments can range from land to air to space, while volume allocation can range 
from cubic feet to cubic inches.  Lastly, these applications require heterogeneous resource 
support for flexibility, application-specific requirements, and insertion of next-generation 
technology to fully maximize size, weight, and performance. 

As part of the main objective, the program was to develop a multicomputer hardware/software 
architecture to meet the wide-ranging requirements and would do so while leveraging as much 
commercial technology as possible to ease usability and application development and reduce life 
cycle costs.  Finally, this technology was to be demonstrated and transitioned to application 
programs and to the commercial HPC community. 

Specifically, the EHPSC program objectives were to: 

   

• Perform architecture design and analysis of the EHPSCS two-level multicomputer concept.  

• Demonstrate architecture development tools.  

• Implement a scalable, embedded hardware/software multicomputer functional testbed based 
on leading COTS technology. 

• Demonstrate and benchmark an insertion application algorithm running on the multicomputer 
functional testbed. 

• Investigate and implement advanced packaging concept for embedded application transition 
of the EHPSCS technologies. 

• Develop and demonstrate the ReConfigurable Transport Engine (RCTE) for next-generation 
application requirements. 

• Develop and deliver a COTS-based multicomputer debugger. 
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3 Approach  

The Embedded HPSCS research program will combine advanced Digital Signal Processing 
(DSP), multicomputing, software, and packaging technologies to produce a prototype testbed 
system for use in a variety of defense and commercial applications that  require high processing 
and I/O bandwidth in environmentally constrained configurations.  The testbed will be 
architected to make use of the latest in commercial technologies to provide scalability via a 
switched network and an innovative software architecture.  Advanced packaging technologies 
will be investigated to not only address size, weight, and power, but to also address cost and 
reusability.  These technologies will be demonstrated and made available for commercialization 
as well as to application programs. 

3.1 EHPSC Two-Level Multicomputer Architecture 

To support such wide-ranging objectives, the EHPSCS program has adopted an architecture 
approach that is based on a two-level multicomputer concept.  This architecture must support 
applications requiring GOPs of aggregate processing throughput and provide real-time network 
connections across a scalable number of heterogeneous resources.  A typical scalable system is 
shown in Figure 1.   

A processing system based on the EHPSCS architecture can be viewed as a single machine that 
contains multiple functionally cohesive subsystems.  The subsystems are networked by a loosely 
coupled real-time network.  Real-time, real-world signals enter and exit the EHPSCS system on 
the Sensor and Downlink subsystems.  The Processor and Memory subsystems are required to 
execute the algorithms.  Each subsystem is in turn composed of a variable number of nodes, and 
each node has an input and output connection to the network.  

Under the two-level architectural concept, the first-level computer, which is the network 
interface controller (NIC), is separate from the second-level computer, which is an application 
processor.  Each level is implemented with its own complete hardware and software layer that is 
decoupled from the other.  This encapsulation of the real-time network I/O functions permits 
native resource operating system (OS) and tools support and increased resource efficiency by 
eliminating the need to handle network traffic.  The result is a resource fully dedicated to the 
execution of the user application which increases the effective throughput efficiency of the 
multicomputer system.   

Figure 1.  Embedded High Performance Scalable Computing Architecture Concept 
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The application processor is also sometimes referred to as a resource.  Note that the term 
“resource” referred to in this document can be of any system functionality such as a compute 
resource, a sensor interface, memory, etc.  The EHPSCS two-level architecture concept is shown 
in Figure 2.   

A conscious effort was made during the architecture design phase of this program to adopt an 
open architecture based on COTS components and avoid a proprietary system.  This was 
achieved with the two-level multicomputer concept in concert with a COTS-based, switched 
network interconnect.  Several attributes result from this COTS-based, two-level architecture.  It 
is scalable, meaning that resources can be added or subtracted  from the network based on 
application needs.   It is expandable, permitting a heterogeneous system.  It is flexible, meaning 
different applications can run on the same hardware.  It is modular, such that each resource node 
is an independent computer that can be combined to form a flexible system configuration.  And 
lastly, application software is portable allowing development and execution on multiple, 
different platforms thus preserving the investment made in software development as the 
hardware evolves or changes.   These features will be discussed in more detail in the following 
sections. 

 

 
Figure 2.  EHPSCS Two-Level Multicomputer Architecture Concept 
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The hardware function in the NIC is based on the LANai network interface chip from Myricom.  
The LANai is a RISC based NIC chip that provides the network processor and protocol interface 
to the Myrinet network. The network software function is implemented by a Myrinet Control 
Program (MCP) which is executed by the LANai. The MCP network software in the EHPSCS 
architecture is called the Data Synchronization Queue (DSQ). The LANai and DSQ are 
combined to provide the real-time scalable network solution for embedded system application. 
The network function is fully isolated from the application layer to offer maximum portability in 
support of diverse processing resources.  The application processor was chosen based on leading 
COTS DSP microprocessor technology. The DSP compute node is currently based on the 21060, 
a representative state-of-the-art DSP technology from Analog Devices, Inc.  

3.2 Myrinet Overview 

Myrinet is a high-performance, packet-based switched network that is the preferred network for 
the EHPSC program.  The Myrinet was developed under previous DARPA sponsorship to 
advance the embedded high-performance computing technology base.   

Each Myrinet link is bidirectional and full duplex providing 160 Mbytes/sec in each direction.   
Low-latency cut-through crossbar switches of up to 16 ports provide scalability across the 
network.  Unlike other networks that share a communication medium, the aggregate throughput 
of the Myrinet increases as the network scales up in size.  The Myrinet switching technology 
provides scalability and a uniform processor interconnect at multiple levels in the architecture: 
from board level to backplane to System Area Network (SAN) and Local Area Network (LAN). 

Myrinet exists in two protocols – a SAN protocol for board-level and backplane-level 
communication and a LAN protocol for system-to-system and longer distance communication.   
Each protocol provides flow control and error control on each port.   

Any network topology is allowed.  The single-port interfaces and multiple-port switches may be 
connected by links in any network topology, including networks that provide redundant paths for 
performance and fault tolerance. The Myrinet interfaces map the network, and use whatever 
paths are available from host to host.   Myricom provides board support software tools for 
interfacing host platforms with embedded Myrinet topologies and Sanders has built on these 
tools to provide board support software for the EHPSCS APU. 

Myrinet packets may be of any length, and thus can encapsulate other types of packets, including 
IP packets, without an adaptation layer. Each packet is identified by type so that a Myrinet, like 
an Ethernet, can carry packets of many types or protocols simultaneously. Thus, a Myrinet 
supports several software interfaces. 

Myrinet building blocks consist of four basic components.  These are the LANai, the crossbar 
switch, the Myrinet Interface (MI) and the FIFO Interface (FI).  The LANai and the crossbar 
switch have been described, previously.  The MI chip provides the electrical conversion between 
the SAN protocol and the LAN protocol.  The FI chip is basically the SAN interface subset of 
the LANai.  It interfaces directly to a SAN port and consists of a SAN protocol interface on one 
end and a parallel FIFO interface on the other.    
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For more detailed information on the Myrinet network, refer to either Myricom’s web site at 
www.myri.com or the attachment, High Performance Scalable Computing Distributed Architecture 
Resource Controller Technical Reference, Revision 1.1. 

3.3 Testbed Development Approach 

A major objective of the EHPSCS program is to develop a scalable, embedded 
hardware/software multicomputer functional testbed based on leading COTS technology.   

This functional testbed is the hardware and software realization of the two-level multicomputer 
architecture concept described in Section 3.1.   

The approach taken in the hardware implementation was to leverage as much from leading edge 
commercial technologies and develop what was necessary to demonstrate the architectural 
concept and promote future technology insertion.  The Analog Devices Super Harvard 
Architecture (SHARC) 21060/62 processor was used as the core commodity processor for 
clusters of multiprocessing nodes which will be linked by an embedded Myrinet switching 
network to enable scalable low latency, high bandwidth interprocessor communication.  In 
addition, a transition path to highly constrained embedded applications was developed and 
demonstrated with advanced packaging research on the testbed hardware. 
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Figure 3.  EHPSCS Multicomputer Architecture Concept 
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The underlying software philosophy was to provide a suite of visualization tools to support the 
development of low latency real-time, complex large scale applications.  This philosophy offers 
the system application developer an environment independent of the underlying resources and 
network interconnect of the two-level multicomputer.  The testbed enables portability, reuse, and 
target interoperability of advanced signal processing algorithms such that they can be developed 
in a workstation environment and transitioned seamlessly to real-time systems.  The 
development environment includes tool sets for system architecture analysis and profiling, 
multiprocessor debugging, and a variety of resource compilers, linkers, and real-time kernels. 
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Figure 4.  EHPSCS Software Philosophy 

 

The selected application environments for the EHPSCS APU boards include workstations, 
commercial and ruggedized VME-based systems, and highly constrained real-time systems, such 
as missiles, radars, sonars, infrared search and track (IRST), and other dual-use systems. The 
common link between these diverse applications is the integrated modular hardware, software, 
interfaces, and design/debug tools.  

Validation of the architectural concept was done with a demonstration of the functional testbed 
consisting of the processing-intensive Householder matrix transformation function that is part of 
the Space-Time Adaptive Processing (STAP) algorithm.  
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Upon validation, testbeds were produced and made available to the High Performance 
Computing community and its programs to support various system application developments. 

3.3.1 Hardware Development Approach 

The hardware development objectives under the EHPSCS program were to demonstrate the two-
level multicomputer architecture concept implementation.  Another objective was to develop an 
advanced packaging concept for embedded application transition of these technologies.   

The approach taken for demonstration purposes was to leverage leading edge technology in the 
implementation of the two-level multicomputer.   The Analog Devices SHARC 21060/62 
processor was used as the core commodity processor for clusters of multiprocessing nodes which 
is linked with an embedded Myrinet switching network to enable scalable low latency, high 
bandwidth interprocessor communication.  This concept is shown in Figure 5.  EHPSCS Scalable 
Multicomputer.  Two processing nodes, each consisting of a SHARC cluster and LANai Myrinet 
interface, were implemented on a single 6Ux160 VME eurocard form factor in the first 
realization of the two-level multicomputer, the Arithmetic Processing Unit (APU).   

The complete EHPSCS testbed contains hardware in addition to the APU.  A backplane was 
needed for network-level connectivity across APU modules.  An adherence to COTS standards 
as much as possible drove the backplane with VME form-factor constraints for use in a COTS 
chassis.  The backplane provides scalability within a chassis, but to expand on a system level and 
for communication with the workstation host a transition module was developed to support the 
Myrinet LAN protocol, for interchassis connectivity.  The Myrinet Topology Expansion Module 
(MTEM) was developed to translate the SAN network-level connectivity across the backplane to 
the interchassis LAN protocol to scale from system to system.  These components, in an industry 
standard, rack-mountable, 19-inch chassis, make up a complete hardware testbed. 
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Figure 5.  EHPSCS Scalable Multicomputer 
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The program investigated several advanced packaging concepts to not only demonstrate a 
version of the APU for highly constrained applications, but to address cost, power, and reuse 
issues.  A low-cost High Density Interconnect (HDI) packaging technology, developed by 
Sanders, a Lockheed Martin Company and GE Corporate Research & Development allows a 
complete processing node, containing four SHARC processors, 3 MB RAM, and a Myrinet 
interface, to be implemented on a single 5 cm x 8 cm multi-chip module (MCM) package.  For 
embedded applications, four MCMs can be implemented on a 6U x 160 VME eurocard form 
factor board, providing a total of 2  GFLOPS (or 43 MFLOPS/in3) of peak performance on a 
single card slot.  Leading edge HDI derivative technologies were used to experiment with 
subtile-based advanced packaging to investigate cost reduction, reuse of subtiles, and testability 
of non-known good die.   

 

3.3.2 Software Development Approach  

The software architecture approach for the EHPSCS program was to extend the full potential of 
the two-level multicomputer concept to enable system scalability, heterogeneous computing, 
fault tolerance, and innovative tools with industry standard support.  To accomplish the scalable 
communication, high-performance, low-overhead software goals, an industry standard 
Application Programming Interface (API) was chosen for the program.  The preferred API was 
Message Passing Interface (MPI).  

The MPI specification for embedded applications was not finalized in time for the EHPSCS 
functional demonstration schedule.  Therefore, Sanders continued on a parallel effort in the 
development of Data Synchronization Queues as an alternative to MPI for the demonstration and 
validation of the two-level multicomputer concept for embedded applications. 

The other half of the parallel effort was the port of MPI to the EHPSCS testbed.  Sanders 
Advanced Common Processor program worked cooperatively with the EHPSCS program in a 
research and development effort to port MPI and integrate MPI-based tools into the EHPSCS 
testbed.  These efforts led to a series of realistic application demonstrations on the testbed for a 
more robust validation and application insertion opportunity for the EHPSCS technology. 

A key attribute of this software architecture approach is to provide for a real-time network-level 
kernel that is free from node-specific operating system dependency.  This is accomplished 
through a high performance, highly compact data synchronization kernel (referred to as DARC) 
that resides at the network layer of the two-level multicomputer architecture, shown in Figure 2.   

DARC (Distributed Architecture Resource Controller) is a network runtime environment 
optimized  for real-time parallel processing.  In the context of the embedded EHPSCS program, 
DARC utilizes the Myrinet and its underlying control fabric of switches and flow control for 
point-to-point packet communication between network nodes.  DARC executes on Myricom’s 
LANai chip.  The LANai forms the interface between Myrinet  and each node.  DARC has a 
front-end that interfaces directly to Myrinet for sending and receiving Myrinet packets and a 
back-end that interfaces directly to a node for resource control and data flow.  The front-end 
validates incoming packets as DARC packets and hands them off to the back-end for processing.  
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Packets are generally of two types: resource control and data set.  The portion of the back-end 
that handles resource control packets is very closely coupled to the hardware implementation of 
the node providing such functions as program loading and node debugging.  The portion of back-
end that handles the data set packets implements a unique parallel processing data-flow model 
called Data Synchronization Queues (DSQ). 

 

The DSQ model represents an innovative data-flow approach to multiprocessor program 
development as opposed to the mainstream distributed control and shared memory approaches 
commonly employed by distributed real-time operating system (RTOS) kernels.  With a 
distributed Real-time Operating System (RTOS), processors typically share memory and 
coordinate and synchronize their use of the shared memories through global semaphores.  With 
DSQ, all data partitioning, data flow, and data synchronization information is encapsulated into a 
set of DSQ data structures that completely define how the processors will communicate at 
runtime.  This approach lends itself well to a visual development environment for complex high-
performance signal processing applications where a graphical user interface can automatically 
generate the DSQ data structures as they are interactively mapped by the user onto a network 
architecture. 

 

Together, Myrinet, DARC, and DSQ form a network operating system for multiprocessor 
applications in the sense that together they manage all of the network nodes and resources, 
ensuring data flow direction, integrity, coherence, and timeliness without the need for processor-
oriented operating systems.  This allows the application programmer to concentrate on the 
computational aspects of a multiprocessor program without having to deal with the complexities 
of data flow and synchronization.  Likewise, the nodes are spared the overhead of a distributed 
RTOS kernel, allowing more of each node’s resources to be dedicated to the algorithm. 

 

Figure 6 is an architectural decomposition of the prototype embedded EHPSCS testbed that 
utilizes the APU and SUN nodes.  In this figure, each node is decomposed to illustrate the major 
hardware and software functional blocks and interfaces that comprise each node.  The closely 
coupled shared memory interfaces within a node represent the first level in EHPSCS multi-
computing and the loosely coupled Myrinet interface represents the second level in EHPSCS 
multi-computing.  At the network interface is the LANai chip (it is referred to by Myricom as a 
chip and not a processor because it contains a processor and interface circuitry) that executes the 
DARC runtime and performs DSQ data flow.  Layered between each node application program 
and the network is a Resource Network Interface (RNI) component.  From the network point of 
view, a node contains a number of resources.  For a resource to use the network, an RNI 
component must be created for that node. 
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Figure 6.  Prototype Embedded EHPSCS Testbed 

 

The focus of this description is not on specific Myrinet nodes but on the enabling runtime 
environment that binds them into a network.  Therefore, the focus is on the DARC control and 
DSQ data-flow software that spans the Myrinet from one LANai to another as illustrated in 
Figure 6.  

A final note on terminology. The Myrinet connects nodes (the first level in multi-computing).  
Nodes in turn connect resources (the second level). Nodes can use their own resources (via level 
2) or they can use resources on other nodes (via level 1).  The term module encompasses the 
embedded aspect of the EHPSCS program.  The distinction of a module is important because 
modules (circuit boards) plug into the embedded EHPSCS backplane that provides module-to-
module Myrinet connectivity. One module may consist of multiple nodes interconnected on the 
module with Myrinet.  For example, an APU module contains two APU nodes.  Each APU node 
is further decomposed into a set of APU resources (LANai, SHARC1, SHARC2, etc.) as shown 
in Figure 6.  Figure 7 illustrates all of these levels of EHPSCS embedding. 
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Figure 7.  Levels of EHPSCS Embedding 

In summary, the successful integration of Myrinet, DARC, DSQ, and the SUN and APU nodes is 
the primary software approach.  A successful demonstration will result in the insertion of 
EHPSCS technology into COTS products in an effort to establish new standards in the area of 
embedded high performance computing. 

3.4 Software Tools Approach 

In keeping with the thrust of leveraging COTS technologies, the EHPSCS program integrated a 
set of commercially available system design, simulation, and profiling tools that would lead to a 
seamless path from algorithm implementation on workstations to real-time system operation on 
the EHPSCS testbed.  Sanders has taken advantage of multiple ongoing DARPA-sponsored and 
academia developments to achieve an integrated environment to capitalize on successful High 
Performance Computing tools for application development, analysis and characterization, 
modeling and simulation, as well as software development.   

Numerous COTS technologies and government-funded university research technologies have 
been integrated at Sanders to form the EHPSCS software development tool suite. The current 
EHPSCS APU reference implementation for the EHPSCS program utilizes the SHARC 
manufactured by Analog Devices, Inc. (ADI).  ADI and other COTS vendors provide various 
SHARC-based development tools including compilers, multi-processor (MP) kernels, and 
emulators/debuggers. 
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Myricom provided board support software tools for interfacing host platforms with embedded 
Myrinet topologies and Sanders built on these tools to provide board support software for the 
EHPSCS APU. 

Application programs targeted for execution on the multi-computer testbed were linked with 
libraries that provide the communication and DSP components required for runtime execution of 
massively parallel signal processing applications. For the communications library, the emerging 
Message-Passing Interface (MPI) standard (and implementations derived from that standard) 
were leveraged as a cost-effective solution. The MPI standard was developed under government-
funded research programs at several cooperating universities and laboratories. MPI provides a 
common application program interface (API) for parallel programs ported between workstation 
clusters and embedded parallel machines. For the DSP library, a COTS implementation 
optimized for the SHARC and integrated onto the multi-computer testbed was used. 

Rounding out the EHPSCS software development tool suite are a set of performance simulation 
and performance profiling tools.  Again, existing public domain research programs were 
leveraged to provide these capabilities as a cost-effective solution. 

Software from the Ptolemy project at the University of California at Berkeley was transferred 
and demonstrated as the EHPSCS multi-computer performance analysis tool. This software 
environment provides a performance simulation capability to model EHPSCS architectures on 
embedded Myrinet topologies. Two performance profiling tools based on MPI, Nupshot and 
ParaGraph were also transferred to the EHPSCS multi-computer testbed. Both Nupshot and 
ParaGraph are graphical program visualization tools for message-passing parallel computers. 
Nupshot was developed at Argonne National Laboratory and ParaGraph was developed at Oak 
Ridge National Laboratory.  

3.5 ReConfigurable Transport Engine (RCTE) Approach 

In the second half of the EHPSCS program, the baseline two-level multicomputer architecture 
was extended to specifically address multiple next-generation application challenges.  Key 
challenges included technology-neutral support and hard real-time performance for wide range 
support of high-performance applications.  Technology-neutral support enables continuous 
technology refresh and flexible system application through ready-insertion of the latest COTS 
technologies.  Improvements in the hard real-time performance address applications with finer-
grain performance requirements such as the STAP insertion program.  The key objective of the 
RCTE design was to implement the extended architecture features in a prototype for 
characterization and concept validation. 

The RCTE prototype design fully leveraged the development effort of the DARPA-sponsored 
Digital MicroArchitectures (DMA) program in 1996.  Under the DMA program, Sanders 
designed the Common Logic Frame (CLF) network interface microarchitecture.  This 
microarchitecture defined a set of approaches that were adapted for the RCTE prototype.  These 
approaches included a hardware-based network protocol acceleration engine, zero-copy message 
passing, and reconfigurable network and resource interfaces to support different COTS 
technologies. 
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The RCTE prototype is based on a low-cost commodity RISC engine combined with field-
programmable gate-array (FPGA) technology and a Myrinet network protocol interface to 
demonstrate reconfigurability in network interface and technology independent supports.  The 
RCTE prototype interfaces to the existing EHPSCS testbed environment to facilitate test and 
integration and characterized for hard-real-time performance application.  The approach for the 
RCTE under the EHPSCS program was to functionally test and validate the hardware prototype 
and demonstrate and characterize performance that can be compared to similar measurements on 
the LANai-based APU. 

4 Progress 

The EHPSCS hardware/software functional testbed system along with a released software 
development tools environment and documentation provided insertion program users with a 
complete operating environment for advanced application developments requiring scalable high 
performance computing technology.  To date, Sanders has delivered 14 EHPSCS testbed systems 
which include 70 APUs and 18 MTEMs, to multiple insertion programs including UYS-2A, 
STAP, ACP, UUV, P507, and SHARE.  Significant progress has been made by the insertion 
program users to date in the porting and mapping of advanced algorithms on the EHPSCS 
platform.  Examples of insertion accomplishments include the successful demonstration of a 64-
processor EHPSCS system for space-time adaptive processing in May, 1997 by the STAP 
program as well as the detection and tracking algorithms running in the SAR, EO, and IR 
processing domains of the ACP project. 

The EHPSCS testbed system developed under the EHPSCS program is an expandable 
configuration providing up to 11 GFLOPS peak performance using 1 to 11 EHPSCS APU 
modules.  As Figure 8 shows, the EHPSCS functional testbed consists of the following 
components: 

• Standard 20-slot VME chassis with 13-slot EHPSCS backplane section and 6-slot standard 
VME backplane section for support of COTS product options. 

• Arithmetic Processing Unit (APU) with low-cost 6U-160 implementation using discrete 
components; SHARC-based, dual-node capability providing 960 MFLOPS peak 
performance; on-board 128 Mbyte memory expansion; on-board Myrinet 8-port network 
switch; four Myrinet ports on the backplane connector; two Myrinet SAN ports on the 
faceplate; on-board boot support, and JTAG support.  

• Myrinet Topology Expansion Module (MTEM – refer to Section 4.1.3), which provides 
Myrinet topology expansion within the EHPSCS backplane configuration and external to the 
backplane for additional EHPSCS chassis and/or workstations. The MTEM also provides 
redundant network configuration support within the EHPSCS testbed. Four Myrinet LAN 
protocol ports are provided by each MTEM board.  

• System software and application development environment with Sun workstation host 
support over a common Myrinet network, a high-performance network kernel based on the 
Data Synchronization Queue (DSQ) technique, Myrinet system boot-up support, system 
application analysis and development tools, SPOX-MP COTS kernel support, and SHARC 
target development tools.  
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Figure 8.  EHPSCS Testbed Functional Block Diagram 

The functional demonstration was completed in June 1996. The demo consisted of the 
processing-intensive Householder matrix transformation function that is part of the Space-Time 
Adaptive Processing (STAP) algorithm. The Householder function was allocated to a parallel 
SHARC processor node on an APU module. Real-time sensor data sourcing is simulated by a 
second node with data routed through the Myrinet network. The functional demonstration 
validated the EHPSCS two-level architectural concept, the functional testbed hardware and 
software designs, and the software development tools. 

In October 1996, the eMPI version for resource-constrained systems was also demonstrated on 
the EHPSCS testbed under the coordinated research and development effort with the ACP 
program using an industry standard API.  The EHPSCS MPI implementation offers EHPSCS 
users direct portability of advanced applications developed under workstation or supercomputer 
environments to the EHPSCS parallel target environment. 

In November 1995, Sanders demonstrated the first advanced packaging development with the 5V 
Embedded DSP Multichip Module, which provided a path for insertion of the EHPSCS 
technologies into highly constrained applications.  That was followed in November 1996 by the 
completed design of the 3-volt version of the 480-MFLOPS node design targeted for MCM 
packaging.  The 3-volt design is essential in reducing system power consumption for large 
computation system applications and can be transitioned to system application with aggressive 
processing density requirements. The 3-volt design was also the basis of an MCM exercise to 
evaluate tile-based packaging concept completed in July 1997. 

In July 1997, an alpha version of a Multi-Processor Source Debugger based on Dolphin 
Interconnect Solutions' TotalView commercial tool was demonstrated on the EHPSCS testbed. 
TotalView is a leading COTS MP source-level debugger product.  The integrated TotalView 
capability offers EHPSCS users a highly productive network-based multi-processor debugger  
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environment. Also integrated into the EHPSCS tool suite is the commercial White Mountain 
DSP SHARC Emulator tool which provides EHPSCS users with a high degree of flexibility in 
choosing a preferred debug environment. 

In April 1998, the RCTE network interface controller prototype was completed and characterized 
to validate the microarchitecture concept and to demonstrate reconfigurability and hard real-time 
performance improvements. 

The sections that follow describe in detail the progress of each development effort for the 
EHPSCS program. 

4.1 Multicomputer Testbed Development 

A first-generation EHPSCS hardware/software functional testbed using discrete components was 
completed in June 1996. The EHPSCS functional testbed provides up to 11 GFLOPS of peak 
performance in a single COTS VME chassis using eleven APU modules. 

The testbed consists of a standard 20-slot 6Ux160 VME chassis with a 13-slot EHPSCS 
backplane section and a 6-slot standard VME backplane section for support of COTS product 
options.  This backplane and chassis are available from a variety of commercial vendors.  The 
EHPSCS backplane is a 13-slot backplane providing mainly Myrinet and SHARClink 
connectivity for up to 11 APU cards and 2 MTEM cards.    The combination of the two 
backplanes offers maximum network throughput, an open architecture, and COTS module 
support.  The testbed is shown in Figure 8 and Figure 9. 

 
Figure 9.  EHPSCS Testbed Photo 
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The typical development configuration for the testbed is a quantity of APU boards combined 
with at least one MTEM card and a host computer.  The MTEM card provides a LAN connection 
to the host computer equipped with a Myrinet interface card.  The host can be a workstation or a 
VME single-board computer and provides a host environment for application development.  A 
PC is connected to the testbed via SHARC Links for hardware test and verification of the 
SHARC-based APU boards.   

4.1.1 Arithmetic Processing Unit Development  

The first implementation of the EHPSCS two-level multicomputer is the Arithmetic Processing 
Unit (APU).  The APU module utilizes the Analog Devices  

ADSP-21060/21062 single-chip Digital Signal Processor (DSP) as the application processor. 
This Super Harvard ARchitecture Computer (SHARC) is a 32-bit processor optimized for signal 
processing applications.   The LANai from Myricom is used for the network controller function 
on the APU which implements the Myrinet switched network.  As shown in Figure 10, the 
design consists of two identical processing nodes of four ADSP-2106x DSPs and the Myrinet 
LANai providing 960 MFLOPS peak processing throughput.  The two processing nodes are 
connected through the Myrinet via an on-board 8-port crossbar switch. 
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Figure 10.  EHPSCS Arithmetic Processing Unit Block Diagram 

The EHPSCS APU module utilizes a 6Ux160 VME form factor platform for printed circuit 
board structure.  The board is shown in Figure 11.  Each processing node contains up to 64 MB 
of DRAM and 1 MB external SRAM.  The board has link port connectivity and JTAG access for 
testability as well as COTS software tool support.   The SHARClinks and Myrinet ports run out 
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of high-density, 235-pin connectors, which provide a high degree of I/O capability to the 
backplane for flexible, high-performance applications.  For more detail on the functionality and 
operation of the APU board, please refer to the attached Hardware Description Document for 
High Performance Scalable Computing Arithmetic Processing Unit Revision 1.  

HPSC APU Module

 
Figure 11.  EHPSCS Arithmetic Processing Unit 

The APU module was successful in demonstrating and validating the two-level multicomputer 
architecture and providing a  software development testbed.  A suite of SHARClink-based 
confidence tests were developed to verify the hardware in an automated fashion using the 
Arithmetic Processing Unit Test Procedure, which is attached to this document.  These tests 
allowed some in depth exercise of the APU hardware.  This exercise revealed a subtle fault at 40 
MHz operation that could be corrected with a performance increase in the LANai’s local bus.  
Myricom cooperated with Sanders in determining the source of the failure and enhanced the 
local bus drivers in a respin of the LANai die.  

4.1.2 EHPSC Backplane Development 

The SHARC-based portion of the APU design was derived from a legacy SHARC-based VME 
board design developed under Lockheed Martin IRAD.  In an effort to leverage COTS 
technology and reduce design risk, the original concept of an APU implementation included the 
VME64 bus interfaced to the root processor.  A custom P2 backplane was investigated to provide 
Myrinet connectivity as well as link port and JTAG connectivity. The SHARC links were used 
extensively in the legacy design for test and interprocessor communication.  These were included 



 

 

 

19

in the APU design to reduce test and integration time while working with the new Myrinet.  It 
soon became evident that the VME standard on P2 could not support the quantity nor signal 
integrity necessary for these I/O requirements.  With the addition of high-density, impedance-
controlled backplane connectors to the APU, the VME bus was no longer necessary and was 
removed from the design concept.  Thus, a custom backplane mainly consisting of redundant 
Myrinet connectivity and link port connectivity was required and developed.  The backplane 
provides the high bandwidth and signal integrity as well as a bridge to the COTS VME 
backplane resident in the same chassis.  It retains the VME standard board-to-board pitch and 
compatibility with standard chassis.   

The major backplane connectivity is shown in Figure 12 and Figure 13.  Each arrow in Figure 13 
represents a bidirectional Myrinet port between an APU module and an MTEM module.  
Similarly, each arrow in Figure 12 represents a bidirectional link port between DSPs.  Note that 
Figure 12 shows only board to board link connectivity.  The on-board connectivity is not 
represented. 
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Figure 12.  EHPSCS Testbed Backplane SHARClink Connectivity 

 
Recent progress has been made in the industry standardization effort of Myrinet System Area 
Network (SAN) connections.  Midway through the EHPSCS program, Myricom addressed the 
standardization approach in two ways.  The first was a Myrinet standard connector/cable 
definition that supports two bidirectional SAN ports.  These offer board-to-board cable 
connectivity within a chassis, most commonly via front panel connectors.  The second was an 
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industry draft standard for Myrinet SAN links on VME P0.  This draft standard defines Myrinet 
connectivity supporting two bidirectional SAN ports over the VME P0 connector.  This draft is 
Myrinet-on-VME Protocol Specification Draft Standard, VITA 26-199x, Draft 0.5 and can be 
viewed at http://www.vita.com/vso/draftstd/myri-vme-d05.pdf, a copy of which is attached to this 
document.  The front panel cable/connector was implemented on the APU, Rev. 1.1.   

In support of the P0 draft standard, CSPI Inc. has since offered standard products for backplane 
overlay modules that plug into the P0 connector across four slots of a VME backplane to provide 
Myrinet switching among all eight ports.  Refer to http://www.cspi.com/multicomputer/2600tech.htm for 
a detailed description of the use of this standard and the backplane overlay module. 

4.1.3 Myrinet Topology Expansion Module Development 

The Myrinet Topology Expansion Module (MTEM) was developed in cooperation with the ACP 
program as a means to increase communication bandwidth among APU cards, to provide 
network redundancy within the testbed, and to provide network protocol conversion to a LAN to 
extend the system interconnect beyond a single cluster of APU modules. 

The MTEM board consists of two 8-port crossbar switches that switch 13 Myrinet SAN ports, 
one from each APU and two from the other MTEM via the backplane, and three MI protocol 
converters.  The testbed supports two MTEM modules.  These modules provide the network 
redundancy as each provides switching to all 11 APUs in a testbed.  Figure 13 is a 
comprehensive diagram showing all testbed Myrinet connectivity between the 11 APU boards 
and the two MTEM boards.  It includes the connectivity among the backplane, within the 
MTEMs, and within the APUs.  All arrows in the figure represent Myrinet SAN ports.   
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Figure 13.  EHPSCS Testbed Myrinet Connectivity 
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The MTEM boards provide a peak cross-sectional LAN bandwidth into and out of the testbed of 
1.92 Gbytes/sec, which facilitates the testbed-to-testbed scalability of the EHPSCS architecture.  
The MTEM board is shown in Figure 14. 

 
Figure 14.  EHPSCS Myrinet Topology Expansion Module 

 
4.1.4 Distributed Architecture Resource Controller Development 

The Distributed Architecture Resource Controller (DARC) is a Myrinet control program that 
implements the network protocols established for the embedded EHPSCS system.  The DARC is 
cross-compiled from C source code on a host Unix development platform and loaded onto an 
embedded network of LANai processors via a host Myrinet interface card.  The interface card 
contains a LANai that is loaded with a DARC image using tools on the host.  The LANai on the 
host interface card is called the root. The embedded network LANais are booted from ROM 
when the network nodes are powered up. The network LANais execute a boot loader that 
receives and executes a DARC program image from the network.  The DARC program images 
are distributed onto the network nodes via the host node’s root LANai. 

Every unique type of node in the embedded EHPSCS system will receive and execute a unique 
DARC program image.  For example, the SUN host node executes the SUN-DARC program and 
the APU processor node executes the APU-DARC program.  The back-end portion of the DARC 
that interfaces to the resources on a node is what makes each DARC unique to a node type.  The 
front-end portion of the DARC that interfaces to the Myrinet implements a common EHPSCS 
packet communication protocol.  A top-level block diagram showing the software components of 
the DARC software is illustrated in Figure 15. 
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Figure 15.  DARC Software Top-Level Block Diagram 

The DARC functionally decomposes into four primary software components: the Network 
Controller (NC), the Resource Controller (RC), the Data Set Controller (DSC), and the Runtime 
Services (RTS).  The RTS is the underlying software that handles boot loading, context 
switching, memory management, and hardware interface drivers.  The NC, RC, and DSC are 
users of the RTS. 

The NC is responsible for both input packet processing and output packet processing. The NC 
uses the RTS to send and receive packets on the Myrinet. The NC decodes incoming packets as 
either resource control messages or data set messages and passes the messages to the RC and 
DSC, respectively, where the messages are decoded and processed.  Output messages 
constructed by the RC and DSC are passed to the NC where they are constructed into Myrinet 
packets and transmitted. 

The RC is responsible for handling resource control messages.  The RC uses the RTS to interface 
to the internal node interfaces and obeys the hardware and software protocols established for 
those interfaces.  Resource control services include boot loading, program loading, data loading, 
data extraction, resource debugging, etc. 

The DSC is responsible for handling data set messages.  The DSC also uses the RTS to interface 
to the internal node interfaces and obeys the hardware and software protocols established for 
those interfaces. The DSC and RC internally interface with each other to arbitrate access to the 
shared resources.  Data set services include input and output data set construction, queuing, and 
notification to local and remote resources. Data sets and Data Synchronization Queue (DSQ) 
data flow are described in detail in Section 4.1.5. 

In order to fully understand the structure and execution environment of a DARC program on an 
EHPSCS node, it is helpful to describe the DARC by a specific example.  Currently, two DARC 
implementations exist.  The SUN-DARC, which executes on a host node, and the APU-DARC, 
which executes on a processor node.  The interface to the SUN-DARC from an application 
program (resource) executing on a SUN is documented in the SUN Resource Network Interface 
Component Specification, which is attached to this document.  The interface to the APU-DARC 
from an application program (resource) executing on an APU is documented in the APU 
Resource Network Interface Component Specification, also attached to this document. 
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4.1.5 Data Synchronization Queue Development 

Data Synchronization Queues (DSQ) is a data-flow synchronization model for real-time parallel 
processing.  It is implemented within the DARC runtime software, forming the back-end to an 
embedded EHPSCS Myrinet node.  In an embedded EHPSCS system, the DARC runtime 
handles the data flow and DSQ maintains the data structure.  The application program distributed 
across the compute resources within a node performs the data processing and works on a group 
of network data sets. 

From the network viewpoint, each compute resource on a processor node has a unique set of 
input data sets and output data sets.  Data may be scattered from one resource to many, or data 
may be gathered from many resources to one.  Data scattered from one resource to many 
resources is first constructed into a complete data set before transmission.  Likewise, data 
gathered from several resources into one resource is constructed into a complete data set before 
notification to the application executing on the resource. These scatter/gather operations provide 
data synchronization between the compute resources. 

Additionally, a data set is not notified to the application until the application requests the data, 
therefore data sets may be queued.  This data queuing provides a buffer between the network and 
the application.  A different queue will exist for each unique type of data set.  The length of a 
queue will depend on the memory available on a resource and the worst-case expected latency 
that an application may experience before requesting the data.  Queue length may be tuned on a 
per resource basis and is dependent on the application program. 

In DSQ, an application executing on a compute resource is simply a compute engine that 
receives data, processes the data, and transmits the results.  The compute engine is not concerned 
how the data gets there or where it is going to. The compute engine is concerned only that data 
structure and timeliness are maintained so that it may process the data in a coherent and timely 
manner.  All of the parameters that describe the input and output data sets for each resource in a 
DSQ application are specified in a pair of input and output parameter tables, one pair per node.  
The parameter tables encapsulate all data structure, data timeliness, and network data flow 
information. 

The parameter tables are constructed by the application programmer and executed by the DARC 
at runtime. Parameter tables are created either manually or by an automated visualization tool.  
Other tools already exist to load and execute application programs and parameter tables.  For 
each resource integrated into the EHPSCS system, an RNI specification will exist that specifies 
how the resource application program will access the data sets at runtime. 

4.1.5.1 Data Sets 

A data set represents a single coherent block of data that exists on a single node.  It is coherent 
both logically and physically.  A data set is logically coherent in that it contains a logical 
grouping of data for computation by the algorithm resident on the resource.  A data set is 
physically coherent in that it is bound to a physical address in a single contiguous block of 
memory.  A data set exists on a node as either an input to or output from the application program 
executing on the resources.  Figure 16.  Data Set Organization is an illustration of the different 
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ways that a data set may be perceived.  In all three cases the data set resides at physical memory 
location M and is B bytes in length. 
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Memory Location = M
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Figure 16.  Data Set Organization 

From an algorithmic viewpoint, a data set comprises an X, Y, and Z component.  A single vector 
would then be described as {X, 1, 1}, a matrix as {X, Y, 1} and a three-dimensional (3-d) array 
as {X, Y, Z}.  A single element of a vector, matrix, or 3-d array is described by its element size, 
E.  The basic minimal addressable unit is an 8-bit byte.  A fully constructed data set is presented 
to an application on a resource (input data set) or to a resource on the network (output data set) 
when all of its data slots have been filled.  Data slots will not be filled until the data buffer has 
been allocated for use by a data set. 

From a network viewpoint, a data set comprises S data slots of variable length with a fixed 32-bit 
word width.  A data set is partitioned into slots for the purposes of scatter/gather operations.  
Each data slot represents a portion of the data set that will be transmitted or received (depending 
on whether it is an input or output data set) to or from other network resources.  Data slots are 
inserted into Myrinet packets that travel the network from resource to resource.  A packet 
contains the slot data plus packet header information for traversing the Myrinet.  The definition 
of a data slot actually binds the application’s data to a physical location in resource memory. For 
an output data slot, the definition also binds the slot to (1) a trigger condition indicating when the 
slot will be transmitted, (2) a physical path through the network, and (3) the data set and data slot 
on the receiving resource. 

From a hardware viewpoint, a data set is simply a buffer of B bytes of data located at memory 
location M.  Data buffers are allocated statically at system startup when the parameter tables are 
loaded onto each resource.  The parameter tables specify only offsets into the data buffers so that 
individual slots may be located precisely at runtime, given the static base addresses computed at 
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startup.  Typically, the data buffers will be located off the LANai’s E-Bus in a memory, such as a 
large DRAM, that is shared with the node’s resources.  The parameter tables that point into the 
DRAM are typically located off the LANai’s L-Bus in an SRAM that contains the DARC 
runtime software. 

The DARC runtime software performs two fundamental operations with data sets: data set 
instantiation and data set notification.  Instantiation is the process of loading parameter tables, 
allocating buffers, forming queues, etc. prior to the application’s execution.  Notification occurs 
during the application’s execution.  Notification is the process of filling slots, setting timers, and 
presenting complete data sets to the local application or to another resource on the network.  
Notification also involves the detection and notification of timeout conditions or misrouted data 
slot packets to a designated system controller resource. 

The application program may require several different types of data sets to perform its algorithm.  
The various parameters that describe a data set type and how it is instantiated and notified are 
highlighted below.   

Data Set Class  A data set is either an input to a resource or an output from a 
resource.  All data sets for the entire system are classified as 
belonging to either the class of input data sets or the class of output 
data sets. 

Data Set ID Every data set within a class receives a unique ID that is simply an 
enumeration starting at 0.  The class of input data sets begins at 
ID=0 and the class of output data sets begins at ID=0. 

Data Set Queue Length This parameter specifies how many data sets buffers will be 
allocated for queuing data sets of this type (class and ID).  If this 
count is exceeded, then a notification will be sent to a designated 
system controller resource indicating a data set slot was received but 
dropped.  This parameter may be tuned to fit the resource’s memory 
and the application’s timing. 

Data Set Dimensions The logical X, Y, Z, and E dimensions of a data set must be 
specified to accurately size and locate the data set buffers during 
data set instantiation.  These parameters are passed to the application 
program during data set notification. 

Data Set Partitions A data set is partitioned into a number of variable-sized slots.  This 
parameter specifies how many slots the data set is partitioned into.  
A data set slot (DSS) is identified sequentially starting at a 
DSSID=0.  Each individual slot will carry its own DSS parameters 
as defined below. 

Data Set Notifications For input data sets, this parameter indicates which compute 
resources located on a node (a processor node may contain several 
compute resources) are to receive a completed data set.  For output 
data sets, this parameter indicates which compute resources must 
contribute to an output data set before the data set  is transmitted. 
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Data Set Timeout For input data sets, this parameter is used to determine if a data set 
has arrived within a given timeout interval.  A watchdog clock is 
started when the first data slot is received and checked on the arrival 
of other data slots.  If the data slots have not completely filled the 
data set before the timeout interval, then a notification will be sent to 
a designated system controller resource indicating a data set timeout 
has occurred.  

The data set slots are further described by the following parameters: 

Data Set Slot ID Every data set slot within a data set receives a unique ID that is 
simply an enumeration starting at 0. 

Data Set Slot Size This parameter is the number of 32-bit words of data in this slot. 

Data Set Slot Offset This parameter is the memory offset into the data buffer associated 
with the data slot and data set. 

Data Set Slot Routing For output data set slots, the routing parameters specify the number 
of resources that will receive this data set slot as well as the Myrinet 
route codes required to reach those resources from this resource. 

Data Set Slot Notification For output data set slots, the notification parameters specify the 
receiving resource’s input data set ID and input data set slot ID that 
will receive this output data set slot. 

4.1.5.2 Queuing and Synchronization 

The discussion to this point has focused on the organization and parameterization of data sets 
which are the fundamental DSQ data structure.  This section will form data sets into data queues 
and provide a data-flow synchronization structure for the queue elements. 

Figure 17 shows the composition of a single DSQ. One DSQ will exist for each unique data set 
defined in the network application.  A single data set is buffered in a data buffer.  A group of 
data buffers forms a data queue (DQ). A data  synchronization table (DST) is associated with 
each DQ.  All of the parameters that define a data set, data buffer, and data queue are contained 
in the DST.  The following mathematical notation represents a single data synchronization 
queue: DQ + DST = DSQ. 
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Figure 17.  One Data Synchronization Queue 

Each DQ, DST, and DSQ may be further classified as belonging to an input (I) class or output 
(O) class, resulting in the following notation:  

Input queuing and synchronization:  IDQi  + IDSTi  = IDSQi 

Output queuing and synchronization:  ODQo + ODSTo  = ODSQo. 

In this notation, i ranges from i=0 to i=N, where N is the total number of input data sets in the 
network application and o ranges from o=0 to o=M, where M is the total number of output data 
sets in the network application.  Remember, a unique data set within the network is classified 
first as either an input or output data set and then it is given a unique enumeration number within 
its class.  Any given node in the network will own a unique group of IDSQ’s and ODSQ’s for the 
resources it services. 

Figure 18 brings together all of the data structures and terminology defined so far to illustrate the 
DSQ runtime environment maintained by the DARC software executing on a node’s LANai 
chip.  At the Myrinet interface are the input packets that are received by DARC and the output 
packets that are sent by DARC.  As described earlier, packets contain either control messages or 
data messages.  The DSTs comprising the parameter tables enter as control messages within 
input packets.  The data slots comprising the data sets in the data queues enter and exit as data 
messages within input and output packets. 
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Figure 18.  DSQ Runtime Environment 

Prior to network application execution, all input and output parameter tables are loaded.  This 
triggers the data set instantiation process where all data buffers are allocated and the queues are 
formed.  During application execution, as data slots are received and sent, the process of 
notification begins.  Notification requires the lookup of data set parameters associated with the 
current notification transaction.  Depending on whether it is an input or output transaction, the 
appropriate input or output data structures are referenced. 
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For an input transaction, the input data slot is notified to its IDSQ.  If a complete data set is 
formed by this transaction, then the data set is notified to the application executing on the 
resource.  The data set remains queued until the application recognizes its presence and 
processes the data.  If another input data slot arrives before the previous data set is processed, it 
will be buffered in the next available queue position.  Error conditions that may occur during 
input notification include misrouted data slots, queue full conditions, and timeout conditions.  A 
misrouted data slot or a queue full condition will result in the data slot being dropped. A timeout 
condition will occur if the time from the arrival of the first slot to the nth slot exceeds a timeout 
interval specified in the input parameter table.  If any of these errors occur, then an error 
notification is sent to a designated system controller resource. 

For an output transaction, an output data slot is removed from its ODSQ and notified to a remote 
resource.  An output data slot is not notified to a remote resource until the data set that it belongs 
to has been completely assembled on the local resource.  If several compute resources on the 
local node will be contributing to the output data set, then they must all indicate output data set 
availability before a data set will be sent slot by slot to the remote resource(s).  New data sets 
may be constructed in the output data queues while older partially constructed sets are still in 
progress. When an entire output data set becomes available, it is sent one slot at a time to the 
remote resource(s).  Any queue overflow conditions that may occur will be handled as an error 
notification to a designated system controller resource.  The remote receivers will detect and 
handle any misrouted data slots or timeout conditions as part of their input transaction 
processing. 

Figure 19 is an illustration of the scatter/gather data flow synchronization that is possible with 
DSQ.  The network application in this example contains the following: three nodes numbered 
from 0 to 2, five resources numbered from 0 to 4, four input data sets numbered from 0 to 3, and 
four output data sets numbered from 0 to 3.  Resource 0 owns the Output Data Set 0 which is 
partitioned into three slots.  Output Data Set 0 Slot 0 is sent to Resource 1, Output Data Set 0 
Slot 1 is sent to Resource 2, and Output Data Set 0 Slot 2 is sent to Resource 2.  This illustrates 
data scattering.  Data set slots are transferred between nodes as Myrinet packets.  Note that node, 
resource, and data set numbering have global scope whereas slot numbering has local (data set) 
scope. 

Resource 2 contains a single Input Data Set 1 that in turn contains a single slot, although it could 
contain multiple slots but it is simplified for the illustration.  When that slot is filled, Input Data 
Set 1 is processed, creating the resulting Output Data Set 2.  When Output Data Set 2 is 
available, it is sent as a single slot to Resource 5’s Input Data Set 4 Slot 1.  Resources 3 and 4 
also contribute to Resource 5’s Input Data Set 4.  This illustrates data gathering.  When all three 
slots of Input Data Set 4 are available, then that data set is processed by Resource 5. 
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Figure 19.  Scatter/Gather Data Flow Synchronization 

Node boundaries are shown in Figure 19 because they are essential for routing Myrinet packets.  
EHPSCS module and chassis boundaries are not shown for simplicity, although these boundaries 
do affect data flow timing because of changes in Myrinet transmission protocols when crossing a 
chassis boundary. 

4.1.5.3 DSQ Performance Characterization 

In the development and characterization of the DSQ paradigm, Sanders focused on the 
improvement of critical real-time system scalability issues.  Specifically, the EHPSCS program 
sought to improve system program load time, initialization time, data synchronization time, 
compute resource efficiency, and total message passing latency over what is typically provided 
by commercially available systems.   Sanders characterized the testbed performance running 
DSQ with respect to these issues. 
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Figure 20 shows the program load process for the testbed.  Once the LANai is booted with the 
DARC from the node level, a one-time parameter table containing all network connectivity 
information is passed to it from the host.  Lastly, the resource is loaded with application code.  
An important point is that the EHPSCS system does not use an OS on the SHARC resources, 
saving loading time of what would typically be 500 KB of code. 
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Figure 20.  EHPSCS Program Load 

The characterization data for program loading of the EHPSCS system is shown in Figure 21.  
The system scales in program load time with the number of nodes, with load times being 
proportionally reduced with the number of hosts contributing to the loading. 

Program Load Consists of : -113kbyte Executable file

Nodes HPSC HPSC HPSC
(1 SUN) (2 SUNS) 4 SUNS)

1 0.19 0.19 0.19
10 1.90 0.95 0.76
20 3.80 1.90 0.95
30 5.70 2.85 1.71
40 7.60 3.80 1.90
50 9.50 4.75 2.66
60 11.40 5.70 2.85
70 13.30 6.65 3.61
80 15.20 7.60 3.80
90 17.10 8.55 4.56

100 19.00 9.50 4.75
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Figure 21.  Program Load Characterization 
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The initialization process for the EHPSCS system simply requires an attach between each LANai 
and resource.   An attach is simply a message passed from the resource to the network interface 
controller.  This is a fixed time of 266 us, independent of the size of the scalable system, since all 
attaches are done in parallel.  This is significant in comparison to shared memory systems that 
scale in time with the number of resources because of loading and coordination of semaphores 
and shared memory buffer names. 

Figure 22 describes the data transfer and synchronization process of DSQs on the EHPSCS 
testbed.  The two key features in the synchronization processes are that 1.)  the synchronization 
and data information is contained in a single packet for the EHPSCS system and 2.)  notification 
occurs only once per data set in the EHPSCS system.  The result is that the overhead and 
synchronization latency times for the EHPSCS system become less significant, compared to data 
transfer times, as packets become larger and are pipelined.  In a semaphore-based 
synchronization system, the synchronization information and the data are transmitted separately 
adding a proportional amount of synchronization latency to each packet.   

 

HPSC Synchronization

Resource LANai LANai Resource

Data Sync & Data Data

•Synchronization Information and Data Combined into 1 packet

•Synchronization Information approximately 12 bytes

 
Figure 22.  Synchronization Functional Comparison 

 

The EHPSCS synchronization is performed in the DARC at the network level in the two-level 
multicomputer architecture.  The resource is oblivious to the operation and is therefore more 
efficiently applied to application processing.  The number of synchronizations does not affect the 
resource utilization.  This also accommodates heterogeneous resource OS support.  The support 
of different resource operating systems provides complete flexibility in hardware, software, and 
tool selection for resources.  As resources change, the network-level software (DARC) remains. 
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Slot Size Slot Count     
(bytes) 1 4 8 16 32 64

4 59.68 87.79 123.92 196.42 340.94 630.51
16 60.77 87.76 123.87 196.38 342.16 632.78
32 61.10 88.02 124.39 198.10 344.40 637.29
64 60.93 88.39 125.92 200.06 348.20 645.59

128 61.49 89.92 127.82 203.80 355.20 662.22
256 62.21 92.51 132.31 211.88 372.00 690.71
512 63.65 96.79 140.21 227.79 401.77 749.79

1024 67.82 109.08 166.74 280.67 508.55 967.93
2048 82.44 144.21 226.33 390.80 721.13 1380.06
4096 118.05 219.65 352.71 620.28 1153.40 2222.01
8192 195.49 371.42 608.17 1079.52 2024.64 NA

16384 347.96 680.23 1121.05 2004.27 NA NA
32768 658.40 1298.09 2152.14 NA NA NA

DSQ Overhead
bytes 4 4096 8096 16384 32768
Tim e usec 51 40 30 26 18

Total Latency Measurements (usec)

 

Figure 23. DSQ Total Data Transfer and Synchronization Latency Measurements 

 

Figure 23 and Figure 24 show the Total Data Transfer and Synchronization Latency 
Measurements for the DSQ running on the APU board.  The measurements varied over data slot 
size and data slot per data set count.   It should be noted that the worst-case overhead latency was 
measured at 51 us in the simplest data set case.  As the data set becomes more complex, the 
overhead latency decreases. 
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Figure 24.  DSQ Total Data Transfer and Synchronization Latency Measurements 
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The EHPSCS development recognizes that system complexity is in the data synchronization and 
is therefore packaged this away from the compute resources for network communication 
efficiency and performance gains, approaching the bandwidth of the network.  A user should not 
have to compromise system flexibility or scalability to reduce communication latency.   

4.1.6 Testbed Benchmark Application Demonstration 

A first-generation EHPSCS hardware/software functional testbed using discrete components was 
completed in June 1996. The EHPSCS functional testbed provides up to 11 GFLOPS of peak 
performance in a single VME chassis using 11 Arithmetic Processing Unit (APU) modules. The 
first demonstration of the EHPSCS testbed along with an application demonstration was 
completed in late June, 1996. The demo consisted of the processing-intensive Householder 
matrix transformation function that is part of the Space-Time Adaptive Processing (STAP) 
algorithm. The Householder function was allocated to a parallel SHARC processor node on an 
APU module. Real-time sensor data sourcing was simulated by a second node with data routed 
through the Myrinet switch network. The successful completion of the application demonstration 
validated the EHPSCS functional testbed hardware/software, the software development tools and 
environment, and the basic two-level multi-computer architecture concept. 

4.1.7 Message Passing Interface Development 

Another major goal of the architecture was software scalability and portability.  By nature of the 
two-level multicomputer, all application code is decoupled from the network communication 
code.  By developing application code in a standard Application Programming Interface (API), 
Message Passing Interface (MPI) for instance, the application code becomes portable from 
platform to platform.  The obvious advantage of this is that software can be developed in a non-
real-time workstation environment and seamlessly ported to real-time target hardware – in this 
case, the EHPSCS Multicomputer Testbed. 

An implementation of MPI was incorporated as part of the EHPSCS multicomputer testbed 
development in collaboration with the ACP program.  MPI is a standard application 
programming interface for writing portable and scalable high-performance message passing 
based parallel programs in a heterogeneous system.  It is highly conducive to performance-
oriented parallel applications and contains a broad scope of functionality.  In addition, MPI is 
becoming widely accepted in the parallel computing community.  The MPI standards forum is 
representative of government, industry and academia.    The final MPI-1 standard was published 
in May 1994 and the MPI-2 standard in July 1997.  Sanders is a member of the MPI-RT forum.  
The purpose of the MPI-RT forum is to provide extensions to MPI for real-time systems and 
resource-constrained systems.  Sanders has been a driving force in the MPI-RT forum to define 
the resource constraint (RC) standard.  The target date for the MPI-RT standard is summer 1998. 

The critical design requirements governing the MPI implementation were resource memory 
constraints, low latency, and modularity to allow retargeting of code.   The implementation 
developed is based on the MPI-2 real-time subcommittee definition of an embedded version of 
MPI-1.1.  The MPI implementation structure consists of three layers; API, Protocol, and 
Network.  The API provides a portable interface for writing parallel applications.  The Protocol 
layer manages MPI specific protocols along with flow control and reliability.  The Network layer 
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provides MPI packet transport functionality.  It also uses a Myricom mapping utility for dynamic 
network mapping and EHPSCS-developed software tools for loading and administration.  

This modular implementation effectively allows retargeting of code to different architectures in a 
limited development time.  It also allows for retargeting code to different locations within an 
architecture; for example, limited resources in embedded targets.  Layers were placed in the 
appropriate part of the communication hierarchy on a target-specific basis.  For a SUN 
workstation, only the low-level network send/receive functionality is placed on the LANai.  The 
EHPSCS APU has enough SRAM to support MPI implementations because most of the MPI 
protocol is pushed to the LANai.  For an optical processor application, all the MPI protocol is 
pushed into the LANai.  Figure 25 shows an implementation specific layering. 

 
   Sun   APU   LANai 
 
Resource  API 
 
   Protocol   API 
 
   Network   Protocol   API 
 
      Network   Protocol 
 
LANai         Network 
 
       
 
 

Figure 25. Implementation-specific Layering 

In conjunction with the MPI implementation, an environmental toolset was developed.  These 
tools are specified in the EHPSCS MPI Users Reference Guide, section 7.3, and include MPICC, 
MPIRUN, MPISETUP, MPINODES, and a SHARC “printf”. 

MPICC provides a simple method of compiling MPI programs.  Compilation is performed with 
the appropriate MPI flags and links to appropriate libraries.  MPICC contains options that allow 
cross compile for the SHARC and PPC, links to alog profiling libraries, and enabling of SUN 
debug execution under gdb or ddd control. 

MPIRUN provides a convenient method to run MPI programs.  MPIRUN contains options that 
allow the user to specify the number of nodes to run, specify the nodes and executables in a 
process file, generate a script file instead of running, or run a profiling tool upon program 
termination. 

MPISETUP and MPINODES provide the user a seamless method of determining the topology of 
the network.  MPISETUP, in conjunction with a Myricom Myrinet Mapper utility determines the 
available nodes and associated routes.  In a static network configuration, MPISETUP need only 
be run once.  MPINODES provides a list of available network nodes. 
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A SHARC “printf” was created to ease application development as well as for MPI 
implementation debug.  It uses functionality in the MPI library to send printf information to the 
SUN for display.     
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Figure 26.  MPI Latency Characterization and Figure 27.  MPI Bandwidth Characterization show 
the characterization results using MPI on the EHPSCS testbed.  The Sanders MPI 
implementation provided the proof of concept required to transition EHPSCS technology to 
commercial facets.   MPI was successfully ported to a “dumb” node and to a two-level 
multicomputer consisting of a “smart” node SUN and ADI SHARC based resource constrained 
nodes.  Generic application porting was relatively seamless.  Peak bandwidth for large messages 
is good (122 MB/s – 76% of peak 160 MB/s bandwidth).   In addition, MPI applications that can 
overlap communication and computation perform very well. 

However, the implementation does have some shortcomings.  End-to-end latency numbers are 
somewhat poor (35 us for 0 Byte messages).  This is because the control program is resident on 
the LANai, which is a performance-limited processor.  A faster communication processor is 
necessary for improved latency.  In addition, the Sanders MPI implementation may not be 
interoperable with other MPI implementations.   MPI is an API specification, not a protocol 
specification.  Vendor implementation of MPI is protocol specific. 

4.1.8 Advanced Packaging 

The EHPSCS architecture is supported by a scalable packaging approach to produce flexible and 
cost-effective embedded mission application solutions.  For avionics applications for instance, an 
implementation is needed that minimizes size, weight, and power (SWAP).  In addition to a 
standard printed wiring board (PWB), the project has developed advanced scalable packaging 
solutions using High Density Interconnect (HDI) MultiChip Module (MCM) process technology 
from General Electric Corporate Research and Development (GE CRD).   

By their very nature, MCMs reduce size, weight, and power over an equivalent discrete 
representation.  Size and weight are reduced by the elimination of packaging and PWB board 
space.  Power is reduced due to the fact that components are driving low-capacitance MCM 
traces and die pads rather than PWB traces and package pins.  But SWAP reduction comes at a 
cost.   MCMs have traditionally been very expensive, both in terms of cost/risk and development 
time.   Most integrated circuit vendor production lines are optimized for packaged part 
production, making the cost of handling and testing unpackaged die high.  MCMs also require a 
development cycle of approximately 6-9 months, which can impact rapid insertion opportunities 
of state of the art electronics.  The advanced packaging effort under the EHPSCS project 
addresses both SWAP reduction for constrained military insertions and improved cost and risk of 
MCM applications for EHPSCS users. 

Three generations of MCMs were developed for the EHPSCS program.  The Embedded DSP 
MCM was functionally equivalent to one-half of an APU board and was a 5V design 
implemented in standard HDI technology.  The DRAM MCM was implemented in MCM-Flex 
technology in an attempt to reduce the cost of the module.  And lastly, the Low Power DSP 
MCM again was functionally equivalent to one-half of an APU board but was a 3.3V design 
implemented in a modular fashion in MCM-Flex technology.  These are described in detail in the 
paragraphs that follow. 
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4.1.8.1 Embedded DSP MultiChip Module Development 

The purpose of the 5V Embedded DSP MCM was to demonstrate a modular packaging 
architecture that is consistent with the EHPSCS design with a reduction in SWAP for use in 
highly constrained applications.  The DSP MCM consisted of a single processing node, virtually 
identical in functionality to each node on the APU board,  four ADSP-21060 SHARC DSPs, 1 
MB of SRAM, a LANai network interface, and an eight port crossbar switch.  The block diagram 
of the DSP MCM is shown in Figure 28.   

This advanced packaging exercise produced a DSP processing node with 480 peak MFLOPS in a 
3.2” x 2.5” package, providing an impressive 60 MFLOPS/in2 processing density.  This is an 
increase of a factor of approximately 2.5 over the discrete APU implementation.  The 5V DSP 
MCM validated the node architecture packaging concept and provided an embedded system 
transition path to insertion program users. 
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Typical Power = 16W @ 5V
308 Pin ceramic integral package
Standard HDI Technology

 
Figure 28. 5V Embedded DSP Multichip Module 

This MCM was designed concurrently with the APU Rev. 0 board.  The APU served as a 
discrete prototype for the MCM before the MCM was actually fabricated, which allowed some 
design changes to be incorporated into the MCM before actual fabrication.   

This MCM was developed in baseline HDI technology.   A side view of this technology is shown 
in Figure 29.  This technology requires milling on the package for individual die cavities in the 
package to achieve planarity across top surface of die after which layers of multilamination are 
applied for interconnect.  A pictorial description of this process is attached at the end of this 
document.  
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Figure 29.  EHPSCS 5V Embedded DSP MCM – Baseline HDI side view 

HDI technology offers many unique features over other MCM technologies that were used in this 
particular implementation.  One feature is the ability to attach packaged parts or die directly to 
the top of the interconnect layers.  Another feature is the reparability of the interconnect.  Due to 
great demand from the personal computer market for fast SRAM at the time of this development, 
it was impossible to acquire the necessary memory for this project in die form.  Therefore, 
packaged SRAM were soldered directly onto the HDI layer in place of die.  In addition, for risk 
mitigation reasons, the 3 one-time-programmable PALs used for the SHARC/LANai interface 
were buried in the MCM like all the other die, but also had pads brought up to the top layer (with 
the packaged SRAM).  In the event that the original contents of the PALs needed to be changed 
for design functionality, the traces to the buried PALs could be cut, and a new PAL die could be 
wirebonded to the top layer.  As it turned out, all three PALs did change and new ones were 
bonded to the HDI.  One of the changes required a trace cut with two jumper wires.  Both of 
these workarounds were critical to the success of demonstrating the embedded MCM.  The 
reparability of these modules by GE CRD was impressive.  Photos of the depelted and reworked 
MCMs are shown in Figure 30. 

 
Figure 30. EHPSCS 5V Embedded DSP MCM 

Left:  Depelted MCM (no HDI interconnect)  
Right:  Complete MCM with discrete components 
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Fabrication was completed and testing began on three 5V Embedded DSP MCMs in early 1996.  
The modules were tested standalone at GE CRD with confidence tests based on a version used to 
test the APU modules.  The internal node functionality was verified standalone at 25 MHz.  In 
all, three MCM units were produced under this prototype effort.   

4.1.8.2 DRAM MultiChip Module Development 

The 5V DRAM MCM development objective was consistent with the 5V DSP MCM and 
included investigation into reduction of the cost of MCM production by using ‘plastic HDI’ or 
MCM-Flex (MCM-F) technology.   A great deal of the cost of standard HDI technology is in the 
series of precision steps necessary to produce a module; the milling of a package on a per-die 
type basis and the multilamination process, for instance.  MCM-Flex technology is able to use 
less expensive interconnect than baseline HDI multilamination.  In addition, in the MCM-F 
process, the die are bonded directly to the interconnect rather than the interconnect being bonded 
to the die as is the case with baseline HDI.  This eliminates the need for costly precision milling 
in a package to attain planarity across the die surfaces.  The DRAM MCM exploited those 
features to demonstrate a lower-cost module while retaining the silicon density of standard HDI 
technology. A pictorial description of this process is attached at the end of this document.   For 
more information on the MCM-F process and this MCM in particular, please refer to 
http://www.crd.ge.com/csetl/edci/projects/cof/index.html. 

This advanced packaging exercise produced a 32 Mbyte asynchronous DRAM MCM.  The 
module features 0-wait state burst accesses, in-circuit reprogrammability, and parity error 
detection.  The block diagram is shown in Figure 31.   
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Figure 31. EHPSCS DRAM Multichip Module Block Diagram 
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The interconnect used was a double-sided, prepatterned flex with one spin-on layer.  The 
prepatterned flex is available commercially, while the spin-on layer is a less expensive 
interconnect process relative to one layer of multilamination of standard HDI.  The monolithic 
plastic module was then wirebonded into the same 3.2” x 2.5” ceramic package used for the 5V 
embedded DSP MCM.  The resulting footprint is 2.2 times smaller in board area than the 
equivalent discrete circuitry.  The DRAM MCM did not require the package milling necessary in 
standard HDI technology, thus reducing processing steps and cost.  A side view of this MCM-F 
technology is shown in  

Figure 32.  This module development added low-cost technology to the architecture packaging 
concept and supplemented the embedded system transition path to insertion program users. 
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Figure 32.  EHPSCS MCM/Flex Technology 

 

Two MCM substrates were fabricated at the GE CRD facility, one of which was tested 
standalone on an IMS tester at GE CRD in June 1996.  The DRAM controller design is in-circuit 
programmable allowing design changes to be made after the DRAM MCMs were fabricated.  
The DRAM MCMs were tested for functional operation based on a 5-cycle latency at 1 MHz.  
The operating speed was limited by IMS tester setup.  The DRAM functional tests provided 
verification of the physical design using MCM-F.  A photo of the MCM is shown in Figure 33. 
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Figure 33.  EHPSCS DRAM Multichip Module Photo 

This development successfully demonstrated DRAM functionality as well as MCM cost 
reduction.  In addition, the entire DRAM MCM development provided an important lesson 
learned.  Commercial DRAM products increase in density by a factor of four every 18-24 
months.  This density increase must be compared to the SWAP savings, development cost, and 
schedule of an MCM development.  The DRAM MCM development experience produced data 
points indicating that constrained applications must be justified by cost and schedule for SWAP 
savings compared to similar savings provided by COTS DRAM product cycle advancements. 
This experience was rolled into the development of the Low Power DSP MCM. 

4.1.8.3 Low Power DSP MultiChip Module Development 

The objectives of this effort were to reduce power and to investigate approaches to reduce cost 
and increase MCM reuse.  This effort began with a proven functional design from the 5V DSP 
MCM and discrete APU experience.  Power reduction came in the form of transitioning the 5V 
DSP MCM to this 3.3V version.  Two process steps were taken to accomplish the other two 
goals.  First, the MCM-F process was used to minimize the interconnect cost.  Secondly, the 
design was broken up into three modular tiles.   

The tile concept served several purposes.  By breaking down the whole node design into modular 
tiles, the routing complexity of each tile was much simpler than a monolithic MCM and could be 
routed in fewer layers.  Eliminating the need for spin-on dielectrics or multilamination and 
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routing on a lone double-sided prepatterned flex layer is the lowest cost HDI interconnect.  In 
addition, the smaller tiles should promote tile-based testing to avoid the high costs of known-
good-die (KGD).  Lastly, the modular concept will enhance design reuse in other developments.  
A side view of the tile-based MCM-F technology is shown in Figure 34. 
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Figure 34.  Tile-based MCM-F Technology Side View 

The block diagram of the Low Power DSP MCM is shown in Figure 35.  It is functionally 
identical to the 5V version completed in 1996, but excluded the Myrinet crossbar switch to 
reflect a consistent EHPSCS modular node partition.  By nature of the 3.3V version of the 
design, power density is reduced by at least 50%.  It was divided up into three tiles as shown in 
the diagram.  It has features similar to the 5V DSP MCM, but with a typical power dissipation of 
7.5W.    
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Figure 35. EHPSCS 3V DSP Processing Node Functional Block Diagram 
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During the layout phase of the development, it was discovered that even by dividing the design 
into three modular tiles, the routing density of each still surpassed that supported by the low-cost 
single layer of double-sided prepatterned flex interconnect.  Additional layers of interconnect 
were necessary on each tile.  The final interconnect for each tile consisted of a layer of single-
sided prepatterned flex and four layers of multilamination.  In addition, four layers of 
multilamination were required to interconnect the tiles with each other and the I/O pins of the 
package.  In terms of fabrication costs, the investigation has concluded that the fabrication cost 
was increased compared to the 5V DSP MCM due to the need for eight total layers of 
multilamination.  Only five layers of multilamination were used for the complete 5V Embedded 
DSP MCM. 

The unanticipated routing complexity on the tiles combined with the learning curve involved in 
the tile design resulted in a schedule delay of five months and caused the elimination of MCM 
tile testing step as originally planned. 

The first lot of MCMs yielded five testable modules in May 1997.  A sixth module experienced 
irreparable delamination between layers during manufacturing and was not completed.  A photo 
of the depelted MCM, displaying the 3 tiles, is shown in Figure 36.  As testing began, all five 
MCMs exhibited similar gross failures. This development did not yield a functional prototype 
due to potential process defects and/or bad die in the fabrication and assembly of the MCM 
prototype.  Complete results and analysis are found in Test Results and Fault Analysis For High 
Performance Scaleable Computing 3.3V Digital Signal Processor Multi-Chip Module, Revision -
, which is an attachment to this report. 
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Figure 36.  3V DSP Processing Node MCM 
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The UUV insertion program utilized the 3.3V DSP node design in discrete form and successfully 
demonstrated its functionality and power savings (over 5V version) of at least 50% in November 
1997.   

This investigation concluded that the tile-based process, based on current double-sided 
prepatterned flex interconnect technology, is limited for complex digital designs.  This has 
resulted in the need for multilamination processing steps and higher interconnect cost in our 
design.  The cost data exists now to trade off the cost of a tiled design versus the cost of KGD.  
Lastly, die product cycles (die size/process changes) may be too short to enable effective reuse of 
tiles and may greatly limit the lifespan of a module design. 

4.1.9 Technology Transition and Insertion 

One of the goals of the EHPSCS program was to enhance the High Performance Computing 
technology base.  That goal was successfully accomplished when the first insertion testbed was 
delivered to the STAP program out of Lockheed Martin in Syracuse, NY in July, 1996.  Since 
that date, Sanders has delivered 14 testbeds which include 70 APUs and 18 MTEMs to seven 
different insertion programs, as listed in Table 1. 

 
Insertion Program  APU Deliveries MTEM Deliveries Chassis Deliveries 

  
ACP  29 9 9
STAP  20 4 2
P507  4 1 1
UYS2A  2
UUV  1 1
Others (Internal)  14 3 2

  
TOTALS  70 18 14

Table 1.  EHPSCS Technology Insertion Programs 

The insertion programs cover a wide range of applications, some of which are briefly described 
in the sections that follow. 

In addition to these technology insertion programs, the EHPSCS technology was also licensed to 
a commercial vendor of signal processing systems, CSPI.  In September 1997, Sanders and CSPI 
completed a technology licensing agreement for the design of the EHPSCS APU hardware and 
the EHPSCS testbed system software to CSPI.  CSPI, using this technology, has announced 
products providing up to 16 Analog Devices SHARC DSPs in a single VME 6U slot based on 
the EHPSCS technology. Designs incorporating this licensed technology will provide 
heterogeneous high-performance multicomputer solutions with leading COTS price 
performance. SHARC products based on this technology will be used to further expand CSPI’s 
MAP 2000 Series High-Performance MultiComputer product line.  Through this licensing 
agreement, the EHPSCS program has been successful in meeting the goal of inserting the 
technology into the High Performance Computing commercial community. 
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4.1.9.1 STAP Insertion Program 

The Space Time Adaptive Processing (STAP) Program is a DARPA-sponsored effort based in 
Lockheed Martin Ocean, Radar, and Sensor Systems in Syracuse, NY.  The program seeks to 
demonstrate and validate the EHPSCS technology for next-generation Airborne Early Warning 
radar.  The program inserted two EHPSCS testbeds, one adaptive array processor and one signal 
processor, into an air-based radar testbed.  The adaptive array processor requires some very low 
latency communications in the beamformer and therefore takes advantage of the SHARClink 
connectivity between APUs in the testbed to enhance the Myrinet for this communication path.  
The STAP radar successfully demonstrated clutter and jamming suppression and real-time 
rooftop operation in May 1997.    

4.1.9.2 AN/UYS-2A Insertion Program 

The AN/UYS-2A upgrade is a Lockheed Martin Advanced Technology Labs effort and is jointly 
sponsored by the U.S. Navy, the Defense Research Projects Agency's (DARPA) Rapid 
Prototyping of Application-Specific Signal Processors Program Office, and DARPA's High 
Performance Scaleable Computing (HPSC) Program Office. 

The goal of the upgrade is to demonstrate a 15X processing-performance improvement in the 
AN/UYS-2A - the Navy's standard signal processor - over existing implementations at one-third 
the schedule and cost of the original development. Features include the implementation of a 2-
GFlop Floating Point Commercial Arithmetic Processor (FPCAP) on a Standard Electronic 
Module-format E (SEM-E) module, which is set in the AN/UYS-2A.  The EHPSCS APU 
hardware and software is the basis of the FPCAP design.  The UYS2A processor upgrade 
FPCAP inserts into the Arithmetic Processor slots (three SEM-E) while retaining all hardware 
and software interfaces to the existing UYS2A Enhanced Modular Signal Processor.  The 
processor is used in the Airborne Low Frequency Sonar (ALFS) for low-frequency sonar active 
processing.  The order-of-magnitude increase in processing density allows the implementation of 
a new class of tracking/correlation algorithms without increasing chassis size or power systems. 

The UYS2A program also was responsible for integration of the SPOX-MP operating system on 
to the EHPSCS testbed.  SPOX-MP provides a processor-independent application program 
interface for multiprocessor programs requiring real-time operating system services.  Typical 
single-processor kernel services provided by SPOX-MP include multitasking, intertask 
synchronization (semaphores), intertask communication (queues and mailboxes), and device-
independent I/O interfaces (streams).  SPOX-MP extends these services across multiple 
processors for multiprocessor semaphores, mailboxes, and streams.   

4.1.9.3 ACP Insertion Program 

The Advanced Common Processor (ACP) program is a classified research and development 
program that integrates a number of emerging technology initiatives aimed at providing an order-
of-magnitude improvement and a cost-effective compute solution for a variety of embedded high 
performance scalable computing applications. The ACP program provided synergistic research 
and development with the EHPSCS program in the development of MPI and the MTEM module.  
The ACP program demonstrates the methodologies required to ensure that evolutionary 
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processing technologies are available for low-cost insertion into today's and tomorrow's ground-, 
air-, and space-based embedded signal processing systems.  Through the common testbed 
platform, the ACP program focused on technology insertions for an expanded set of user 
applications, including leading algorithms in image exploitation, optical technology, and network 
bridging.  There are currently nine testbeds in various ACP sites with several more on order for 
the purpose of operational processing later in 1998. 

4.1.9.4 UUV Insertion Program 

The Unmanned Underwater Vehicle (UUV) program is a DARPA-sponsored research program 
within the Signal Processing Algorithms and Application (SPA&A) Directorate of Sanders. The 
objective of the UUV program is to implement a scalable high-performance embedded signal 
processor for UUV applications such as 3D imaging for forward-looking sonar, side scan sonar, 
acoustic comms, and navigation.  The program employed the EHPSCS testbed design for the 
development of two board types (APU and the Interface Unit) for insertion into a custom form-
factor, torpedo-like shell.  UUV  demonstrated the system in 1998 and is in the process of final 
integration in the custom form factor. 

4.1.9.5 P507 Insertion Program 

P507 is a classified space application program at Lockheed Martin Astronautics in Denver, 
Colorado.  The program has developed hardware to channelize fast and wide A/D converter data 
into the testbed via Myrinet for processing.  A significant amount of work has been done in 
virtual prototyping.  This resulted in a software testbed  that was developed using MatLab, 
Netsyn, and GEDAE where functional software testbed models are validated on the hardware 
testbed.  The program has also developed a “suitcase” testbed to support a single APU module as 
a low-cost, portable application development platform alternative to the EHPSCS chassis.  

4.2 Software Tools 

Under the EHPSCS program, Sanders has been successful in leveraging multiple ongoing 
DARPA-sponsored and academia developments and COTS products to provide users with an 
effective development environment.  The following sections detail the software tools available 
for the EHPSCS Multicomputer Testbed.   

To facilitate user support, Sanders developed a two-day Software Training Workshop on the use 
of the EHPSCS software tools and an application development process on the testbed.  The 
workshop also includes an overview of the testbed hardware and software technologies 
employed with hands-on tutorials on MPI, Nupshot/Paragraph, DSP Libraries, and a sample 
application development and compilation on the testbed.  

4.2.1 Multiprocessor Debugger 

To provide effective debugging capability for multicomputer application development on the 
EHPSCS architecture, the Dolphin Interconnect Systems TotalView debugger was adopted.  
TotalView is a source-level, multiprocessor debugger commercial product that is currently in use 
on several workstation and embedded platforms.  It provides typical source-level debugger 
support, but across multiple processors.  Key multiprocessor debug features include setting 
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breakpoints in multiprogram code, single stepping through the code, viewing the code at either 
the source level or assembly level, viewing the values of variables and memory locations, and 
setting the values of variables or memory locations.  TotalView allows the user to 
simultaneously view and control multiple processes.  TotalView is designed to be portable to 
different platforms by separating the target specific functionality from the core debugger 
functionality.  Its product structure enables cost-effective adaptation by the EHPSCS project.  

The EHPSCS version of TotalView runs on a Sun workstation and communicates to the SHARC 
target processors via Myrinet.  The process of porting Totalview to the EHPSCS target involves 
a detailed model of the SHARC instruction set and a disassembler to convert the SHARC 
opcodes to assembly language instructions.  Specific challenges involved the support of the 
SHARC's delayed branch instructions, which required proper identification and handling.  
Models of the SHARC's registers and runtime stack were also required.  A set of routines to read 
the ADI Common Object File Format (COFF) executables also had to be developed to properly 
extract debugging information from the programs being debugged.   

The EHPSCS communication message format was extended to provide a low-level 
communications protocol that allows TotalView to communicate with the SHARCs and to 
control SHARC execution for debug operations.  The SHARC software library support was 
extended to include functions such as setting breakpoints, handling a breakpoint when it is 
encountered during runtime and reading/writing SHARC registers.  These new SHARC library 
functions can be linked in with a SHARC executable to enable TotalView operations at runtime. 

TotalView provides the user with the option of acting as a Sun host for an EHPSCS runtime 
session.  Command line switches allow the user to specify whether TotalView should load the 
Sun SBUS card MCP code and/or the APU MCP and SHARC executables.  The user must 
provide TotalView with three system configuration files in order for it to run correctly.  These 
files specify a map of Myrinet network and a mapping of the executable processes to the 
processors they should run on.  Two of these files, hostdb and routedb, are specified via a system 
environment variable and the other is specified on TotalView's command line. 

TotalView was used extensively in the development and integration of the software for the 
Unmanned Underwater Vehicle (UUV) technology insertion program.  This program consisted 
of a Sun host application and 52 APU processing nodes cooperating together to reduce data from 
a high-resolution sonar array.  TotalView was found to be very effective in isolating and 
identifying bugs in the APU software, particularly during the software integration process.   

For a detailed description of the TotalView debugger and user instructions, see the TotalView 
multiprocessor debugger User's Guide.  The TotalView HPSC Release Notes are included as an 
attachment to this document.   

4.2.2 Profiling Tools 

The Sanders’ MPI implementation contains various profiling libraries that can be used when 
either debugging or tuning the performance of an application.  These libraries write profiling 
logs that can be read by the Nupshot profiling tools, developed by Argonne National Lab.  With 
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the Transpicl tool developed by Lincoln Labs, these log scans be converted for use by the 
Paragraph profiling tool.  

The MPI implementation has a predefined set of events that gets logged for profiling.  
Additionally, the developer may make use of the profiling library to define and log their own 
events.  The profiling tools provide an excellent means of determining correct connectivity and 
load-balancing issues in the target application.  Developers use these tools to increase the 
performance of their application.  The tools can significantly improve productivity with an 
effective display of dynamic system behavior of a complex application.  Events can be set and 
recorded, enabling users to accurately time each portion of their algorithm to analyze 
performance bottlenecks and resource utilization/efficiency. 

4.2.2.1 Nupshot 

The Nupshot program illustrates the performance history of all processors in the network.  It is 
an updated version of Upshot which is a public domain X Windows-based parallel program 
visualization tool developed by Argonne National Laboratory.  The data is logged in the Alog 
format as described in the Upshot documentation.  As shown in the display in Figure 37, the 
processors are identified top to bottom along the vertical axis, starting at process 0 and ending at 
process N-1.  Time is displayed left to right along the horizontal axis.  Colored boxes indicate the 
various states of a process.  

Nupshot correlates the communications transfers so developers can visually see when processors 
are intercommunicating and how long it takes for each communication.  Each discrete event is 
color-coded.  This makes it easier for the developer to concentrate on a particular type of event 
without re-compiling and re-running the application. 

Nupshot
•  Public domain X windows based parallel program visualization tool
•  Developed by Argonne National Laboratory
•  Nupshot, a newer version, is distributed with MPICH
•  Performs post-mortem analysis on log files generated by parallel MPICH programs
•  Log files are in the Alog format as described in the Upshot documentation.

 
Figure 37.  Nupshot Profiler 

 



 

 

 

50

4.2.2.2 ParaGraph 

The ParaGraph analysis tool displays similar information as Nupshot, but uses a more dynamic 
approach.  The Profiling data may be played back through time, whereas Nupshot provides a 
static timeline of when events occurred.  Different displays can be used to view the processor 
topology and network operations in different ways.  ParaGraph provides a visual means of 
detecting instantaneous unbalanced loads in a parallelized algorithm, and allows the developer to 
determine undesirable effects in the processing timeline.  A view of ParaGraph is shown in 
Figure 38.  ParaGraph Profiler 

Lincoln Labs has augmented ParaGraph to include an EHPSCS chassis-specific network 
topology. Additionally, Lincoln Labs has created the Transpicl tools to convert Alog files into 
PICL format for animation in the ParaGraph tool. 

ParaGraph
•  An animated visualization tool to analyze the behavior of parallel programs
•  PICL and the data file format were developed at Oak Ridge National Laboratory
•  PICL execution trace data can be replayed through ParaGraph providing visual animation
•  Inputs event data accumulated by the Portable Instrumented Communication Library (PICL)
•  Work is currently underway at MIT Lincoln Laboratory to build extensions to ParaGraph for
   visualizing the Advanced Common Processor (ACP) execution as well as translation tools to
   convert Alog files from MPICH programs into PICL format for animation ParaGraph tool.

 
Figure 38.  ParaGraph Profiler 

4.2.3 Architectural Simulation and Analysis 

In conceptualizing and designing a system, it is important to have various simulation capabilities 
to help in making system design decisions; this is particularly true for high performance 
multicomputer systems.  A performance modeling capability allows the development team to 
assess the performance and impact of various architectural design decisions.  As part of the 
EHPSCS effort, Sanders has developed performance modeling, simulation, and analysis 
capabilities using the Ptolemy and RAMP tools. 
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4.2.3.1 Ptolemy 

Ptolemy is a software environment developed at the University of California, Berkeley that 
supports heterogeneous system simulation and design using several different models of 
computation, each implemented in a separate domain.  The EHPSCS performance modeling 
capability uses the Ptolemy’s Discrete Event (DE) domain as its engine for performance 
simulation.  This capability has been demonstrated and a paper on the capability was presented at 
the 1997 IASTED International Conference on Modeling and Simulation. The paper by Eric K. 
Pauer is entitled “High Performance Scalable Computing Performance Modeling Using 
Ptolemy”, and is attached to this document. 

The DE domain is a discrete-event simulator that uses a model of computation in which tokens 
with time stamps, called particles, which represent events, are passed among the simulation 
building blocks, called stars.  These are shown in Figure 39.  Myrinet Performance Modeling 
Stars  Ptolemy has been developed in C++ using an object-oriented software architecture to 
facilitate modularity and extensibility.  All of the source code in Ptolemy is freely available via 
the World Wide Web, which facilitates adding extensions to the tool.  Extensions to the DE 
domain, in the form of new stars and particles, were created for the EHPSCS architecture and 
Myrinet protocol.  This effort leveraged off similar performance modeling work started here at 
Sanders under the RASSP program, in addition to the work already done at the University of 
California under the Ptolemy project. 

 
Figure 39.  Myrinet Performance Modeling Stars 
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The key components in the EHPSCS architecture include data sources (SourceNode), LANai 
interfaces (LANai), processing nodes (Node), and Myrinet switches (4/8/16-port Switches).  The 
stars are behavioral virtual prototypes of the components, as they implement behavioral models 
at the appropriate level of abstraction.  Each type of star has a group of settable state parameters, 
which allow the behavior of the model to be adjusted or fine-tuned as appropriate.  In addition to 
the new stars, several new particles were developed to model the data blocks passed between the 
Nodes and LANais and the various Myrinet data and control packets passed among the LANais 
and switches.  These new stars and particles, combined with the built-in stars available with 
Ptolemy, allow performance simulations of large, complex scalable systems to be modeled for 
analysis.   

An additional strength of Ptolemy is its support for hierarchical modeling.  Groups of stars and 
their interconnections can be captured into a single entity called a galaxy.  A galaxy facilitates 
both reuse and simplifies the structure of complex system models.  This hierarchy makes the task 
of creating, managing, and simulating large architectures much easier.  The previously 
referenced IASTED paper provides several examples of this hierarchy. 

 
Figure 40.  Simple Myrinet Modeling Example 

Using the Myrinet models, the various components are placed and connected to specify a system 
architecture.  One example is shown in Figure 40.  Simple Myrinet Modeling Example  All 
systems must include at least one SourceNode star, representing the source of data into the 
system.  Each SourceNode is paired with a LANai star.  As a high-level model of a data source, 
the Source star generates data blocks of a specified size at a periodic rate.  The system also 
typically includes many Node stars, each also paired with a LANai star.  The Node star models a 
processing node at a high-level abstraction, treating the processing taking place on the Node as a 
single measurable task.  In both cases, the LANai acts as an interface between the Node or 
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SourceNode to the Myrinet network.  Lastly, among the LANai stars paired with the Node and 
SourceNode stars, there is a network of Myrinet Switch stars, representing the network topology 
of the system.  There are currently models for four-,eight-, and sixteen-port switches, and 
switches with a different number of ports can be easily supported. 

In order to more easily view and interpret the results of the simulation, a Gantt tool was 
developed.  The Gantt tool displays the activity on each resource in rows over time (time is along 
the x-axis), shown in Figure 41.  Gantt Tool Display of Simple Myrinet Modeling Example  
There is a row for each SourceNode generation of data, each LANai transmit activity, each 
LANai receive activity, the transmit activity for each port in every switch, the transmit queue for 
each port in each switch, and the processing on the node. Thus, most of the stars need several 
rows to display their behavior and performance. Rows are not displayed when there is no 
activity, but the displaying of rows may be disabled. The various activities have been color-
coded to facilitate viewing. Yellow denotes a start up latency, blue indicates normal transmission 
or reception of data, and green indicates processing of data by the node. Problems are shown in 
orange and red.  Orange indicates that one or more blocks have currently originated in the switch 
port and have caused queuing of requests; red is used where switch ports or LANais are idle due 
to blocks that occurred somewhere in the current route path. There are also labels containing two 
integers on most activities. The first number indicates the data packet’s relative position within 
the transmit DST in the LANai where it was transmitted. This first number of the packet label is 
different when it is displayed by the receiving LANai, in which case it indicates the relative 
index of the data packet in the receive DST. The second integer is a unique global identification 
number assigned to the packet. These numbers are assigned sequentially as packets and are 
created in a given simulation; no two data packets will have the same number. This identification 
number facilitates the tracing of a given packet through the Gantt display from the transmitting 
LANai, through the switches, to the receiving LANai. 

 

Figure 41.  Gantt Tool Display of Simple Myrinet Modeling Example 
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This capability enhances the ability of the designer to explore many options in order to find the 
EHPSCS architecture that best satisfies their system requirements.  For more detailed 
information on the Ptolemy tool, refer to http://ptolemy.eecs.berkeley.edu. 

4.2.3.2 RAMP (Real-time Algorithm Mapper and Performance analyzer) 

The Real-time Algorithm Mapper and Performance Analyzer (RAMP) tool was developed by 
General Electric Corporate Research and Development, under the funding of Lockheed Martin.  
RAMP is a graphical tool for designing multi-processor based systems, which helps in evaluating 
the suitability of architectures for implementing algorithms. RAMP provides a methodology and 
tools for rapidly developing real-time systems (such as signal/image processors, and avionics) 
from reusable hardware and software modules.  RAMP supports performance optimization and 
software reuse.  It has a graphical interface consisting of an algorithm window and an 
architecture window. Much like the RASSP architectural trade capability, the user maps the 
algorithmic blocks onto the architecture.  For more information, refer to “An Architectural Trade 
Capability Using the Ptolemy Kernel”, attached to this document.  RAMP provides an automatic 
routing capability, using a shortest route assignment, for the initial flow of data on the 
architecture. It provides the capability to import algorithm topologies exported from Alta’s 
Signal Processing Workstation (SPW). One disadvantage of RAMP is that it does not easily 
allow the addition of models or modeling at higher or lower levels of abstraction. The cost 
functions are also a little constrained as they are not proportioned to the amount of data being 
processed. A built-in discrete event simulator is integrated into the tool and provides the 
simulation capability for the mapped architecture. 

During the initial architecture design phase of the project, RAMP was used to analyze the 
network topology for the testbed design.  RAMP was also explored as an architectural ‘editor’ to 
provide users with a graphical user interface (GUI) for defining a network topology.  Although 
RAMP cannot model the Myrinet protocol at the desired level of abstraction, it can export this 
data to serve as a GUI front end tool for performance simulation under Ptolemy.  For more 
information on the RAMP tool, refer to http://www.sanders.lmco.com/at/hpcot/ramp/index.html 

4.3 ReConfigurable Transport Engine (RCTE) 

In the second half of the EHPSCS program, the baseline two-level multicomputer architecture 
was extended to specifically address multiple next-generation application challenges.  Key 
challenges included technology-neutral support and hard real-time performance for wide range 
support of high performance applications.  The key objective of the RCTE design is to 
implement the extended architecture features in a prototype to functionally test and validate the 
hardware prototype, and to demonstrate and characterize performance that can be compared to 
similar measurements on the LANai-based APU. 

4.3.1 RCTE Concept Overview 

Key network controller enhancements offered by the RCTE over the APU microarchitecture 
include zero-copy network communications overhead, reconfigurable host and network interface 
support, and reconfigurable hardware for real-time data format conversions.   These offer many 
advantages over the LANai based network interface such as a 10x improvement in 
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communication latency, technology neutral support of network interfaces or processing 
resources, COTS network processor support, and reconfigurability for application optimization.  
The enhancements were derived from lessons learned in the performance, operation, and usage 
of the APU-based EHPSCS testbed. 

The RCTE concept is shown in Figure 42.  The RCTE function decouples the network protocol 
interface from the resource, consistent with the EHPSCS architecture approach.  That function is 
reconfigurable such that different networks and resource technologies can be supported as well 
as application specific functionality such as protocol acceleration, data format conversion, or 
performance monitoring.  This promotes rapid technology insertion by relying on firmware 
modifications at most for new resources or functionality.   

Network 
Protocol Interface

Network 
Protocol Interface

Data Movement
& 

Synchronization
Processing

Data Movement
& 

Synchronization
Processing

Data 
Conversion
Processing
(Optional)

Data 
Conversion
Processing
(Optional)

ResourceResource

•Protocol transport
•Myrinet, SCI, FC, etc.
•Wire, fiber media

•Data synchronization
•Queue management
•Data extraction
•Performance monitoring
•Unified network kernel 

•Data format
conversion (fixed,
float, block float, etc.)

•Data alignment
•Application-specific

•Heterogeneous node
•SHARC, Power PC,
C6x, Adaptive
Computer, CSI, CSRC,
function-specific, etc.

RCTE Function

Network
Fabric

Reconfigurable
Resource
Interface

Reconfigurable
Network
Interface

 
Figure 42.  ReConfigurable Transport Engine Concept 

All network data passes directly through the RCTE with zero copies.  Messages need not be 
copied to network controller memory before transmission onto the network nor into network 
controller memory upon reception. 

4.3.2 RCTE Microarchitecture 

A block diagram of the RCTE network interface is shown in Figure 43.   This implementation 
incorporates a Myrinet network protocol interface, a Motorola MPC860 PowerPC 
microcontroller, and an FPGA-based Data Synchronization/Direct Memory Access (DSE/DMA) 
Engine.   

Myrinet was chosen as the network protocol to retain compatibility with the existing EHPSCS 
testbed.  It is implemented with the FI chip from Myricom.  The FI has bidirectional, full duplex 
support for the Myrinet protocol and a simple FIFO interface.   
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Figure 43.  ReConfigurable Transport Engine Network Controller 

The DSE/DMA engine was developed entirely in modular VHDL such that support of a different 
resource interface or application specific function requires replacement of that module’s VHDL.  
This engine was developed with support for a SHARC-based resource as the Compute Node 
interface and a hardware acceleration scheme for the Data Synchronization Queue protocol 
discussed in Section 4.1.5. The DSE/DMA engine is notified when a data set is received or ready 
to be transmitted and, through the use of lookup tables, DMAs the data to its destination on the 
resource bus or out to the network.  This protocol hardware acceleration, coupled with the zero-
copy architecture, results in a predicted network overhead latency reduction of a factor of 10 
over the LANai-based APU.  The actual measured results are discussed in Section 4.3.5  The 
movement of messages that are not identified as data sets is the responsibility of the network 
controller.     

The MPC860 microcontroller performs general housekeeping, lookup table management, and the 
processing of any non-data set messages.  A wealth of COTS support exists for the MPC860 in 
the areas of tools, RTOSes, technical support, etc.  Sanders reviewed several choices for 
emulators and RTOSes and decided on the VisionICE Development System from Embedded 
Support Tools Corporation and the pSOS operating system from Integrated Systems, Inc.  

Two of these network controllers were implemented on the RCTE motherboard, connected via a 
Myrinet crossbar switch as shown in Figure 44.  The motherboard is fully compatible with the 
EHPSCS testbed.  To take advantage of the reconfigurability on the resource side, the resource is 
implemented on a daughter card.  The PCI Mezzanine Card (PMC) standard was adopted for the 
mechanical specification of the daughter card sites to take advantage of COTS resources 
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available in PMC format.  A SHARC-based daughter card was developed for the prototype due 
to Sanders experience with the processor and the tools and software already in place from the 
APU development.  The daughter card scheme provides a platform to mix and match resources 
with a replacement of the resource interface VHDL module in the DS/DMA engine, greatly 
reducing development time and therefore technology insertion time.   
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Figure 44.  RCTE Motherboard block diagram 

 

Conceptually, the RCTE motherboard, populated with Quad-SHARC-based daughter cards, is 
the same functionality as the APU board, but with higher network performance and greater 
flexibility.  Figure 45 below compares the two boards, as well as a flat multicomputer, to show 
the improvement in communication latency and resource efficiency from a flat multicomputer to 
a LANai-based, two-level multicomputer to the RCTE-based, two-level multicomputer. 
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Figure 45.  Multicomputer Interface Comparison 

For more detailed information on the RCTE and its operation, refer to the ReConfigurable 
Transport Engine Technical Specification attachment at the end of this document. 

4.3.3 RCTE Hardware 

The RCTE module was a prototype developed for the performance characterization and 
validation of the key architectural enhancements.  Two RCTE motherboards were built as well as 
two SHARC-based resource daughter cards.   The verification processes for these two assemblies 
was performed in parallel.   Photos of the two assemblies are shown in Figure 46. 
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Figure 46.  RCTE Motherboard and SHARC Daughter Card Assemblies 

The development of the SHARC daughter card was largely based on the APU design to serve as 
a low-risk, consistent resource function to support the RCTE endeavor.  The existing debug 
monitor software was adapted with minor modification to accommodate the link port 
connectivity specific to the ADI SHARC MCM.  The hardware design consists of an enhanced 
DRAM controller function for the support of synchronous DRAM, deviating from the APU 
design.   The hardware verification of both daughter cards was completed in November 1997.  
As can be seen in Figure 47, the board consists of a commercially available Quad SHARC 
MCM, 64 MB of SDRAM, and 512 KB of nonvolatile FLASH memory.    
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Figure 47.  Quad SHARC Daughter Card Functional Block Diagram 

As shown in Figure 43, the network data path of RCTE Network Controller is FIFO based, 
which reduces communication latency by eliminating copies of network packets into SRAM.  
The FIFOs chosen for the Network Controller  are 8K words deep to minimize any interruptions 
in data transfer on both the resource and network sides.   

Both the CPU and the DSE/DMA Engine have access to 128K words of synchronous SRAM.  
The DS RAM and DMA RAM are used to store parameter tables for incoming and outgoing data 
sets.  The CPU also has access to 512K bytes of FLASH memory to store boot code as well as 
the FPGA configuration.  The CPU is responsible for FPGA configuration on powerup.   

Special attention was paid to the separation of three clock domains within the Network 
Controller.  Separate clocks support the network, the CPU, and the resource.  The DSE/DMA 
Engine was designed to support a resource clock domain separate from the CPU clock domain to 
maximize flexibility and performance.  The FIFOs decouple the network clock domain from the 
resource clock domain.  The separation of clock domains maximizes the performance of each 
portion of the Network Controller by allowing them to run at their maximum capacity.  The 
separation also allows flexibility in the choice of resources. 

A series of emulator- and network-based tests were used to verify the hardware functionality of 
the RCTE Motherboard.  The reconfigurability of the RCTE was emphasized during hardware 
verification.  Different configurations were developed and used to exercise functions as well as 
pinpoint errors in network communication tests.  The hardware functionality was ultimately 
verified in recognizing and processing data set packets and non-data set packets.  A variety of 
data sets were constructed, varying in data slot size and data set size, to fully exercise the DSE.  
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This was the basis of the performance characterization of the DSQ hardware acceleration 
functionality.  The results of the characterization are described in Section 4.3.5.1. 

4.3.4 RCTE Software 

The software developed for the RCTE under the EHPSCS program was designed to provide a 
functional demonstration of the key RCTE features.  This demonstration employs a round-trip, 
data set transfer scenario between the Sun host and two RCTE SHARC nodes connected via 
Myrinet.  It verifies the data set handling functionality of the RCTE, which is representative of 
the typical operation of this hardware.  

For the round-trip demonstration, an ASCII configuration file must be created defining both the 
outgoing (i.e., producer) and the incoming (consumer) data sets.  The Sun host accepts this 
ASCII configuration file and generates all the tables required for driving the RCTE.  The Sun 
host EHPSCS application begins the demonstration by issuing EHPSCS resource messages to 
load the RCTE tables across the Myrinet network.  The 860_DARC is the embedded program 
that runs in the RCTE’s MPC860 embedded controller.  It receives and processes the resource 
messages from the Sun EHPSCS application.  Once the RCTE tables are loaded in the RCTE 
RAM, the Sun EHPSCS application starts the SHARC application by sending another resource 
message.  The SHARC application produces the data sets and initiates the transfer of the first 
data sets.  These outgoing data sets are transferred from the first RCTE node to the second RCTE 
node.  The second RCTE node receives the (now incoming) data sets, processes them, and 
transfers them back to the first RCTE node.  The second RCTE node receives the returning data 
sets, which completes the round-trip demonstration.  These processes are shown in Figure 48.  
Sun Host Utility Program Static Table Generation, Figure 49.  RCTE RAM Table Load, 
and Figure 50.  Data set Roundtrip 

 

Figure 48.  Sun Host Utility Program Static Table Generation 
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Figure 49.  RCTE RAM Table Load 

 

 
 

Figure 50.  Data set Roundtrip 
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The five blocks of software designed for the RCTE are described as follows. 

Sun Host Utility program: 

This Sun SPARC host resident application is an off-line utility program that has been 
100% developed and tested.  It is a tool for obtaining user input and generating the 
required RCTE data structures for the demonstration scenario.  The user provides input in 
the form of a text configuration file.  The program accepts this text file as input and 
outputs the generated RCTE tables in individual binary (and Motorola S-Record 
formatted text) files. 

Sun Host EHPSCS Application: 

This Sun host resident application is linked with a set of modified EHPSCS SUN_RNI 
libraries and uses a subset of the SUN_RNI API to send packet messages to the RCTE 
via Myrinet.  This application loads the RCTE tables and uses the following API 
functions: 

SLM_init 

SLM_RCTE_Write* 

SLM_RCTE_Read* 

SLM_RSRC_Send 

SLM_RSRC_Recv  

MMSG_Prog_write 

MMSG_Prog_Start 

These functions are new additions to the SUN_RNI API for the RCTE.  The modified 
SUN_RNI libraries implement SLM_RSRC_SEND (much like SML_DEBUG_Write 
and SLM_DEBUG_Read) to perform the loading the RCTE Data tables from the Sun 
host in to RCTE RAM. 

860_DARC - an MPC860 QUICC Embedded  Application: 

This application executes on the MPC860 and functions as a Myrinet Control Program 
(MCP). The embedded application and the RCTE HW together provide the Distributed 
Architecture Resource Controller (DARC) functionality in this microcontroller.  This 
860_DARC: 

- Holds the compute resources (SHARC DSPs) in reset state. 

- Initializes the RCTE hardware registers. 

- Receives resource packets via Myrinet and load the RCTE data tables into RAM. 

- Releases the compute resources (SHARC DSPs) from reset and load initial SHARC 
boot program. 
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- Receives resource packets via Myrinet and initiate the SHARC DMA to pack and 
load the 48-bit SHARC application into SHARC RAM. 

- Handles MPC860 interrupts to handle errors and service both SHARC messages in 
the 860 FIFO and resource packets from the Myrinet network in the Network input 
FIFO. 

- Processes messages received from the Myrinet network and SHARC resources. 

SHARC Application 

This application running on the SHARCs processes incoming and creates outgoing data 
sets via handshaking with the RCTE during the demonstration.  The SHARCs then 
receive an incoming data set notification from the RCTE when the round-trip transfer has 
completed.  

SHARC RCTE Support 

This component was developed to support the higher level SHARC support library by 
performing the RCTE specific functions.  These functions include handling SHARC 
Inter-Processor Communication (IPC) mailbox interrupts, reading the (IPC) mailbox, and 
sending RCTE Data Synchronization Engine (DSE) notifications.  

All of the software design and implementation is complete.  Due to overruns in the hardware 
schedule and to the hardware intensive nature of the RCTE, the software remains untested on the 
RCTE board.  Both the RCTE hardware and performance validation were sufficiently 
demonstrated for data sets without the use of the described software. 

4.3.5 RCTE Performance 

From a performance standpoint, the goal of the RCTE was to improve upon the latency and data 
buffering overheads of the LANai-based message passing network architecture and realize 
additional performance and resource efficiency for many hard real-time applications.  The 
performance goal was an order of magnitude reduction in Data Synchronization Queue 
communication latency over the existing LANai-based APU.  In addition, the RCTE seeks to 
demonstrate an improvement in power performance over the APU network controller function.  
The following characterization data show Sanders success in meeting these goals. 

4.3.5.1 RCTE Latency Performance 

Characterization of the latency and DSQ acceleration performance consisted of loading 
predefined lookup tables to the Data Synchronization Engine to support a round trip transfer of a 
data set.  The round trip between Node A and Node B on a single motherboard was bounded by 
timestamped messages to mimic and measure a typical send/receive message passing function.  
Figure 51 shows the complete message passing used to characterize the latency performance.  
These time-stamped packets were then passed on to the Sun host and read for analysis.   
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Figure 51.  RCTE Message Passing for Characterization 
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Figure 52.  RCTE Latency Measurement Timeline 
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The latency measurements were made using one node (Node A) as the timing reference. Figure 
52 shows these message transfers on a timeline to visualize the operations being timed.  The 
communication latency was measured as the time to send a message (4) from Node A, receive 
and synchronize (5) at Node B, notify with a message back to Node A, and to synchronize (7) 
and notify (8) on the received message back from Node B at Node A. Messages (3) and (8) 
contain only a timestamp for a body.  Messages (4) and (5) were used to vary data slot and data 
set sizes.  Message (6) contained no body and only consist of header information.  This 
configuration easily provides message passing overhead latency measurements while most 
closely modeling  a send/receive pair.  The results of these measurements are shown in Table 2.  
Note that in the following paragraphs, Total Latency is defined as the time to transfer a message 
from resource A to resource B, including the actual data transfer time.  Overhead Latency is 
defined as the time to transfer a message from resource A to resource B, excluding the actual 
data transfer time.  Overhead latency + (message size * 25ns) = Total Latency. 

 

 

RCTE Total Latency Measurements

Slot Size (Bytes) Slot Count
1 4 8 16 32 64

4 6.68 11.68 21.05 39.85 77.45 152.65
16 6.75 11.95 21.68 41.05 79.88 157.45
32 6.85 12.38 22.45 42.65 83.08 163.88
64 7.05 13.15 24.05 45.88 89.45 176.68

128 7.45 14.75 27.25 52.25 102.25 202.25
256 8.25 17.95 33.65 65.05 127.85 253.45
512 9.85 24.35 46.45 90.65 179.05 355.85

1024 13.05 37.15 72.08 141.88 281.45 560.65
2048 19.45 62.75 123.28 244.25 486.25 970.25
4096 32.28 113.95 225.65 449.05 895.85 1789.45
8192 57.85 216.38 430.45 858.65 1715.05 3427.85

16384 109.05 421.15 840.05 1677.85 3353.45 6704.65
32768 211.45 830.78 1659.25 3316.25 6630.25 13258.25  

Table 2.  RCTE Total Latency Measurements 
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APU Total Latency Measurements

Slot Size (Bytes) Slot Count
1 4 8 16 32 64

0 N/A N/A N/A N/A N/A N/A
4 59.68 87.79 123.92 196.42 340.94 630.51

16 60.77 87.76 123.87 196.38 342.16 632.78
32 61.10 88.02 124.39 198.10 344.40 637.29
64 60.93 88.39 125.92 200.06 348.20 645.59

128 61.49 89.92 127.82 203.80 355.20 662.22
256 62.21 92.51 132.31 211.88 372.00 690.71
512 63.65 96.79 140.21 227.79 410.77 749.79

1024 67.82 109.08 166.74 280.67 508.55 967.93
2048 82.44 144.21 226.33 390.80 721.13 1380.06
4096 118.05 219.65 352.71 620.28 1153.40 2222.01
8192 195.49 371.42 608.17 1079.52 2024.64 N/A

16384 347.96 680.23 1121.05 2004.27 N/A N/A
32768 658.40 1298.09 2152.15 N/A N/A N/A  

Table 3.  APU Total Latency Measurements 

The most critical piece of data measured on the RCTE was the message passing latency  for a 4-
byte, single slot data set (pure overhead latency plus a single cycle – 25ns – of data transfer time 
on the network).  This measurement on the RCTE was 6.68 us, compared to 59.68 us on the 
LANai-based APU – an improvement of 9X, just shy of the predicted results.  It is important to 
note that the overhead latency of the RCTE is fixed.  The overhead latency of the LANai is 
dependent on the transfer size of the data.  This is due to the two-copy architecture of the LANai.  
Based on that, it can be shown that the RCTE overhead latency improvement over the LANai 
actually increases as data slot size increases. 

As data slot sizes increase and the number of data slots per data set increase, the latency ratio 
declines as the LANai’s two-copy architecture is masked by pipelining effects and latency times 
become dominated by the data transfer time.  Even at the large data slot size in multi-data slot 
data sets, the RCTE still shows performance increases over the LANai-based APU. These trends 
are shown in the chart in Figure 53.   
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Figure 53.  Ratio of APU Total Latency to RCTE Total Latency 

Note that the multislot data set measurements for both the RCTE and APU assume streamed 
data, which permits pipelining and therefore more efficient data movement on the LANai.  In a 
real-time system, the application will dictate the data movement, which in all likelihood may not 
be a streamed set of data slots.  A more likely scenario is a scatter/gather operation where 
multiple sources are feeding a single destination with data slots that make up a single data set.  In 
this case, the realistic comparison between the RCTE and LANai would be represented by the 1 
Slot/Dataset set of bars in the back row of the chart above, where messages are unable to be 
pipelined.  For example, in a gather operation using a 1 Kbyte data slot size, the RCTE would be 
an improvement of more than 5X in data transfer times over the LANai.  
Focusing on a simple message passing case clearly contrasts the RCTE and LANai performance.  
Figure 54.  RCTE/APU Latency and Bandwidth Comparison shows a comparison on single 
data slot per data set messages.   They demonstrate the fixed overhead latency of the RCTE and 
the dependence of the APU on data slot size.  The bandwidth chart also shows that the RCTE can 
reach 50% of the network capacity with a data slot size about ¼ the size of one sent/received by 
the LANai.   
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Figure 54.  RCTE/APU Latency and Bandwidth Comparison 

 
 
 
 
4.3.5.2 RCTE Power Performance 
 
The other area of potential performance improvement for the RCTE is in the area of power 
dissipation.  The LANai alone is not sufficient to act as a network controller.  The LANai 
requires a bank of fast SRAM on its local bus for data buffering and processor code.  As can be 
seen in Figure 55, the RCTE network controller components do offer a 25% reduction in power 
over the LANai-based APU network controller components.  To be fair, the APU is a 5V 
implementation, while the RCTE is a 3.3V implementation.  As the table shows, the UUV 
insertion program 3.3V APU network controller components dissipate 33% less power  than the 
RCTE.  This issue must be addressed with additional developments in integrating components of 
the RCTE. 



 

 

 

70

RCTE Network Interface
Part Num. Manufacturer Description Quantity Typ Pwr Max Pwr Tot Typ Tot Max

FI Myricom FIFO Network Interface 1 1.00 1.00 1.00 1.00
MPC860ENZP40 Motorola 40 MHz MPC860 Micro 1 0.75 1.30 0.75 1.30
AT29LV040A-20TC Atmel 512k x 8 FLASH 1 0.00 0.05 0.00 0.05
MT58LC64K32B3LG-10 Micron 64k x 32 SSRAM 4 0.16 0.34 0.64 1.36
OR2T40A-4BC432 Lucent 40kgate LV FPGA 1 2.53 3.37 2.53 3.37
IDT72V255L15TF IDT 8k x 18 LV sync FIFO 4 0.09 0.33 0.37 1.32

Total 5.29 8.40

APU Network Interface
Part Num. Manufacturer Description Quantity Typ Pwr Max Pwr Tot Typ Tot Max

MYRICOM LANai4.1 Myrinet Interface Chip 1 3.50 3.50
SAMSUNG KM64B1003J8 256K x 4 SRAM 8 0.98 7.80

Total 11.30

3.3V APU Network Interface
Part Num. Manufacturer Description Quantity Typ Pwr Max Pwr Tot Typ Tot Max

MYRICOM LANai4.1 Myrinet Interface Chip 1 1.65 1.65
Motorola MCM6929 256K x 4 SRAM 8 0.50 3.96

Total 5.61
 
 

Figure 55.  RCTE/APU Power Comparison 
 

5 Summary 

In keeping with the industry’s emphasis on COTS products, the EHPSCS program has leveraged 
core-enabling technologies, commercial, VLSI device technology, and hardware/software design 
tools and standards to develop a scalable, high performance, real-time multi-level message 
passing multicomputer testbed.  Through the development of a multicomputer tool suite and 
advanced packaging techniques, the program has provided the system designer with a scalable, 
high performance, cost-effective solution that supports next-generation application processing 
requirements and evolving program requirements from prototype to embedded system with 
environmentally constrained conditions.   

The EHPSCS program has been successful in meeting all of its objectives.   Specifically, the 
EHPSCS program: 

• Analyzed, developed, demonstrated, and characterized a two-level multicomputer 
architecture for EHPSCS based on COTS technologies. 

• Developed a hardware/software testbed for concept validation.  The testbed is supported by a 
robust development tool suite including a multiprocessor debugger.  The testbed and its 
technologies were made available to the High Performance Computing community to 
enhance this research technology base. 
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• Demonstrated the performance and scalability of the testbed with multiple, demanding, real-
time algorithms through at least six DoD applications that included, among others,  STAP, 
SAR, EO and IR processing. 

• Transitioned the technology developed under the EHPSCS program to at least five DoD 
insertion programs.  The technology was also transferred to the commercial community via 
the Sanders/CSPI technology licensing agreement.  This broadens the technology transfer 
opportunity while enabling users with COTS support. 

• Developed an advanced packaging concept for environmentally constrained DoD 
applications.  The advanced packaging effort successfully reduced size, weight, and power of 
the architectural realization and explored aspects of reduced MCM cost/risk and reusability. 

• Extended the baseline architecture with technology-neutral and hard real-time performance 
support for a broad range of next-generation insertion opportunities.  The RCTE prototype 
demonstrated an order of magnitude reduction in network communication latency over the 
EHPSCS baseline. 

By using open interface standards and leveraging COTS solutions, the EHPSCS program has 
demonstrated cost-effective, high-performance, scalable computing solutions for real-time, 
compute-intensive, next-generation military applications.   The packaging technologies 
demonstrated should also facilitate transferring of the EHPSCS technology for DoD ground, air, 
and space-based embedded signal processing systems.  The EHPSCS technologies already made 
an impact on the High Performance Computing community.  Leading DoD, NASA, and COTS 
developments that have adopted the EHPSCS technologies include: the Air Force’s Improved 
Space Architecture Concept program, NASA’s Remote Exploration and Experimentation 
program, and CSPI’s next-generation DSP product. 

6 Acronyms 

API   Application Programmers Interface 

APU  Arithmetic Processing Unit 

COTS   Commercial Off The Shelf 

DARC   Distributed Architecture Resource Controller 

DARPA  Defense Advanced Research Projects Agency 

DMA   Digital MicroArchitectures 

DRAM Dynamic Random Access Memory 

DSP  Digital Signal Processor 

DSQ   Data Synchronization Queue 

FI  FIFO Interface Myrinet Integrated Circuit 
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FPGA   Field Programmable Gate Array 

GE CRD  General Electric Corporate Research and Development 

GUI   Graphical User Interface 

HDI  High Density Interconnect 

KGD   Known Good Die 

LAN   Local Area Network 

MCM    MultiChip Module 

MCP   Myrinet Control Program 

MI  Myrinet Interface Integrated Circuit 

MPI   Message Passing Interface 

MTEM  Myrinet Topology Expansion Module 

NIC   Network Interface Controller 

OS   Operating System 

PMC   PCI Mezzanine Card 

RCTE   ReConfigurable Transport Engine 

RISC  Reduced Instruction Set Computer 

RNI  Resource-Network Interface 

RTOS   Real-time Operating System 

SAN   System Area Network  

SHARC Analog Devices Super Harvard Architecture Computer DSP 

SRAM  Static Random Access Memory 

STAP  Space, Time Adaptive Processing 

SWAP  Size, weight, and power 

UUV   Unmanned Underwater Vehicle 

VLSI   Very Large Scale Integrated 
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7 Attachment Listing 

The following list of documents is attached. 

• An Architectural Trade Capability Using the Ptolemy Kernel  

• Arithmetic Processing Unit Resource-Network Interface (APU RNI) Component 
Specification 

• Baseline HDI MCM Technology Process Flow 

• Hardware Description Document for High Performance Scalable Computing Arithmetic 
Processing Unit Revision 1, Final Draft 

• High Performance Scalable Computing Distributed Architecture Resource Controller 
Technical Reference 

• High-Performance Scalable Computing for Avionics Applications 

• High-Performance Scalable Computing for Real-Time Applications 

• High Performance Scalable Computing MPI Users Reference Guide 

• High Performance Scalable Computing Performance Modeling Using Ptolemy 

• High Performance Scalable Computing Primer 

• High Performance Scalable Computing Software Users Manual 

• HPSC Software Release Notes for EHPSCS Rev. 1.4 

• MCM-F Technology Process Flow 

• Myrinet-on-VME Protocol Specification Draft Standard, VITA 26-199x, Draft 0.5, 27 
January, 1998 

• ReConfigurable Transport Engine Technical Specification, Revision 0.64 

• SUN Resource Network Interface (SUN_RNI) Component Specification 

• Test Procedure, Arithmetic Processing Unit 

• Test Procedure, HPSC Chassis 

• Test Procedure, Myrinet Topology Expansion Module 

• Test Results and Fault Analysis For High Performance Scaleable Computing 3.3V Digital 
Signal Processor Multi-Chip Module Revision – 

• Totalview HPSC Release Note 


